cho a, b, c > 0 và a + b + c = 1. tìm GTLN của
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13\)có GTNN là - 13
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}\)
A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}A=aa−1+bb−1+cc−4=1−a1+1−b1+1−c4
=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13=3−(a1+b1+c4)≤3−a+b+c(1+1+2)2=3−16=−13có GTNN là - 13
Dấu "=" xảy ra \Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}⇔a=b=41;c=21
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=\text{a}-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng BĐT Cauchy dạng phân thức :
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
Từ gt \(\Rightarrow\frac{1}{a+b+1}=2-\frac{1}{b+c+1}-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)
\(\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\text{ }\left(1\right)\) (bđt Cauchy)
Tương tự \(\hept{\begin{cases}\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\text{ }\left(2\right)\\\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\text{ }\left(3\right)\end{cases}}\)
Từ (1);(2);(3) \(\Rightarrow\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8\sqrt{\frac{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}{\left(a+b+1\right)^2\left(b+c+1\right)^2\left(c+a+1\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)
\(\Leftrightarrow1\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)Hay \(M\le\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{4}\)
Ta có:
\(\frac{ab+c}{c+1}=\frac{ab+c}{\left(a+c\right)+\left(b+c\right)}\)\(\le\frac{ab+c}{4\left(a+c\right)}+\frac{ab+c}{4\left(b+c\right)}\left(1\right)\)
Tương tự ta có:
\(\frac{bc+a}{a+1}\le\frac{bc+a}{4\left(a+b\right)}+\frac{bc+a}{4\left(a+c\right)}\left(2\right)\)
\(\frac{ac+b}{b+1}\le\frac{ac+b}{4\left(a+b\right)}+\frac{ac+b}{4\left(b+c\right)}\left(3\right)\)
Cộng theo vế của (1),(2) và (3) ta có:
\(Q\le\frac{a+b+c+3}{4}=1\)
Dấu = khi \(a=b=c=\frac{1}{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng bđt Cauchy dạng phân thức ta có :
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!