K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

ặt x+1=tx+1=t thì t>0t>0 và  x=-1+tx=1+t. Ta có

           2x+\dfrac{1}{\left(x+1\right)^2}=2\left(-1+t\right)+\dfrac{1}{t^2}=-2+t+t+\dfrac{1}{t^2}2x+(x+1)21=2(1+t)+t21=2+t+t+t21

                                                                       \ge-2+3\sqrt[3]{t.t.\dfrac{1}{t^2}}=-2+3=12+33t.t.t21=2+3=1  

29 tháng 8 2021

1

 

17 tháng 1 2016

bài này nhìn như vậy thì khó làm 
nhưng bạn  đặt ẩn phụ thì sẽ hơn rất nhiều
Đặt : x-1=a ; y=b
sau đó dùng cô si nhé 
k thì dùng tương đương

17 tháng 1 2016

Thì bạn làm chi mình coi với

 

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

21 tháng 10 2016

olm có ng` lm r` đó bn qua xem lại

22 tháng 10 2016

http://olm.vn/hoi-dap/question/731102.html