Chứng minh rằng nếu có các số x,y,z thỏa mãn đẳng thức\([xy\left(xy-2zt\right)+z^2t^2].[xy\left(xy-2\right)+\left(xy+1\right)=0\)thì chúng lập thành một tỉ lệ thức
Cái chỗ \(xy\)hoặc là chỗ \(z^2t^2\)thì giữa 2 chữ đấy là dấu nhân nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn đã hỏi 4 lần, ngày hôm nay 2 lần, 11 và 12 mỗi ngày 1 lần (mk nhìn vô là ko hỉu và cũng chưa học rờm rà như thế) :))
Đẳng thức đã cho tương đương với
\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy+1\)
\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)
Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh