S2 =3-3 mũ 2 + 3 mũ 3 -3 mũ 4 +...+-3 mũ 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =5-78*32
=5-2496
=-2491
b: \(=6\left(9-6\right)=6\cdot3=18\)
c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)
d: \(=181+3-84+8\cdot25\)
=100+200
=300
e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)
=14000-1
=13999
f: \(=3^3+25\cdot8-1=26+200=226\)
g: \(=3+2^4+1=16+4=20\)
h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)
Đặt \(A=1+3+3^2+3^3+3^4+...+3^{2020}\)
\(3\cdot A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}\)
\(3A-A=3+3^2+3^3+3^4+3^5+...+3^{2020}+3^{2021}-\left(1+3+3^2+3^3+3^4+...+3^{2020}\right)\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\dfrac{3^{2021}-1}{2}\)
#\(Toru\)
a: 6S=6+6^2+...+6^65
=>5S=6^65-1
=>S=(6^65-1)/5
b: 4S=4+4^2+...+4^401
=>3S=4^101-1
=>S=(4^101-1)/3
c: 9S=3^2+3^4+...+3^104
=>8S=3^104-1
=>S=(3^104-1)/8
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30
⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
Ta có:
\(B=3+3^2+3^3+...+3^{2020}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(B=4\cdot\left(3+3^3+...+3^{2019}\right)\) chia hết cho 4
=> đpcm
\(S_2=3-3^2+3^3-3^4+...-3^{2020}\)
\(3S_2=3^2-3^3+3^4-3^5+...-3^{2021}\)
\(3S_2+S_2=3^2-3^3+3^4-3^5+...-3^{2021}+3-3^2+3^3-3^4+...-3^{2020}\)
\(4S_2=\left(3^2-3^2\right)+\left(3^3-3^3\right)+\left(3^4-3^4\right)+...+\left(3^{2020}-3^{2020}\right)+3-3^{2021}\)
\(4S_2=3-3^{2021}\)
\(S_2=\frac{3-3^{2021}}{4}\)
Xem mình đúng không?