\(\left(\sqrt{x}-\sqrt{y}\right)^4+3361-\sqrt{11296320}\)
tìm tất cả số tự nhiên x,y trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)
Do đó , y là số lẻ
Mà 12x , y2 \(\equiv1\left(mod8\right)\)
Suy ra 5x \(\equiv1\left(mod8\right)\)
=> x chẵn
Đặt x = 2k (k > 0)
=> 52k = (y - 12k)(y + 12k)
Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m
và y - 12k = 5m
=> 2.12k = 5m(52k - 2m - 1)
Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5
=> 52k + 122k = (12k + 1)2
Mà 2.12k = 5m => m = 0 và y = 12k + 1
=> 2.12k = 25k - 1
Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình
Vậy x = 2 , y = 13
b) Dùng nhị thức Newton , ta khai triển hai hạng tử được
\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)
Vậy ......
\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)
Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)
Cộng theo vế ta có Đpcm
Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
a) Hàm số đồng biến khi x<0
Hàm số nghịch biến khi x>0
b) \(f\left(\sqrt{3}\right)=\left(\sqrt{3}-2\right)\cdot\left(\sqrt{3}\right)^2=3\sqrt{3}-6\)
\(f\left(1\right)=\left(\sqrt{3}-2\right)\cdot1^2=\sqrt{3}-2\)
Đề sai
sao ý