Giai phương trình:
\(x^{3^{ }}+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\cdot\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}+x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(2x-\frac{5}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=0\\2x-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{5}{8}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{4};\frac{5}{8}\right\}\)
b) ĐK : x khác 0
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\1=x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=-2\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{2}\right\}\)
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">
bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
ĐKXĐ; \(x\ne1\)
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}+7=0\)
\(\Rightarrow\left(x+\frac{x}{x-1}\right)^3-3\cdot x\cdot\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}+7=0\)
\(\Rightarrow\left(\frac{x^2}{x-1}\right)^3-3\cdot\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}+7=0\)
Đặt \(\frac{x^2}{x-1}=a\),khi đó
\(a^3-3a^2+3a+7=0\)\(\Rightarrow a=-1\)
Theo cách đặt,ta có: \(\frac{x^2}{x-1}=-1\Rightarrow x^2+x-1=0\Rightarrow\orbr{\begin{cases}x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{cases}}\)(TMĐKXĐ)
vậy ....
ĐKXĐ: ...
\(\Leftrightarrow x^3+\frac{x^3}{\left(x-1\right)^3}+3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)-\frac{3x^2}{\left(x-1\right)}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+3\left(\frac{x^2}{x-1}\right)-1-1=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+3\left(\frac{x^2}{x-1}\right)-1-1=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3-1=0\)
\(\Leftrightarrow\frac{x^2}{x-1}-1=1\)
\(\Leftrightarrow x^2-2x+2=0\)
Phương trình vô nghiệm