K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

A B C M N D

a, xét tam giác ABN và tam giác ACM có : 

góc A chung

AB = AC (gt)

AN = AM (gt)

=> tam giác ABN = tam giacd ACM (c-g-c)

=> BN = CM (đn)

b, có AB = AC (gt)  

AB = BM + MA 

AC = CN + NA 

AM = AN (gt)

=> BM = CN 

AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)

xét tam giác BCM và tam giác CBN có : BC chung

=> tam giác BCM = tam giác CBN (c-g-c)

c, tam giác BCM = tam giác CBN (Câu b)

=> góc DBC = góc DCB (đn) mà góc DBC = 30

xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl) 

góc BDC = 180 - 30.2 = 120 

mà góc BDC = góc MDN (đối đỉnh)

=> góc MDN = 120 

28 tháng 10 2019

a) Xét ΔABN và ΔACM có:

AB=AC

^BAC: góc chung

AM=AN

=>ΔABN=Δacm(c.g.c) 

=>BN=CM(hai cạnh tương ứng )

b) Ta có:

AB=AC

AM=AN

=>MB=NC

Xét ΔBCM và ΔCBN có:

MB=NC

BC:cạnh chung 

BN=CM

=>ΔBCM=ΔCBN(c.c.c) 

c) Vì ^BDC và ^MDN là hai góc đối đỉnh 

=>^BDC=^MDN

=>^MDN=30°

7 tháng 10 2019

Luyện tập về ba trường hợp bằng nhau của tam giác

7 tháng 10 2019

Mơn bạn nhìu!!! vui

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Xét tam giác ABN và tam giác ACM

có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)

=> ΔABN ∽ ΔACM

b) Có ΔABN ∽ ΔACM

\(\widehat {ANB} = \widehat {AMC}\)

Có \(\widehat {ANB} + \widehat {CNB} = {180^o}\)

     \(\widehat {AMC} + \widehat {BMC} = {180^o}\)

=> \(\widehat {CNB} = \widehat {BMC}\)

Xét tam giác IBM và tam giác ICN 

Có \(\widehat {CNB} = \widehat {BMC}\) và \(\widehat {IBM} = \widehat {ICN}\)

  => ΔIBM ∽ ΔICN (g.g)

=> \(\frac{{IB}}{{IC}} = \frac{{IM}}{{IN}}\)

=> IB.IN=IC.IM

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

a: Xét ΔABM và ΔADM có

AB=AD
AM chung

BM=DM

Do đó: ΔAMB=ΔAMD

b: Ta có: ΔABD cân tại A

mà AM là đường trug tuyến

nen AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

4 tháng 12 2018

nhầm chỗ rồi bạn

5 tháng 12 2018

a, Xét tam giác ABM và tam giác ACM có:

AM cạnh chung

A1=A2

AB=AC(gt)

=>tam giác ABM=tam giác ACM(c.g.c)

b,Vì ABM=ACM(cmt)

=>M1=M2(hai góc tương ứng)

=>M1+M2=180(hai góc kề bù)

=>M1=M2=180độ phần 2=90

=>AM vuông góc với BC

c, Xét tg ADM và tg AEM có:

AM cạnh chung

A1=A2

AD=AE

=>tg ADM=tg AEM(c.g.c)