CMR:nếu \(\frac{a}{b}=\:\frac{c}{d}\)thì\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{a^2-b^2}{c^2-d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Với a,b,c,d dương
Ta có: \(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}<\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}<\frac{c}{a+c+d}<\frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}<\frac{d}{a+b+d}<\frac{d+b}{a+b+c+d}\)
Cộng vế theo vế 4 bất đẳng thức tên ta có:
\(\) 1< A <2 (đpcm)
Bài 2: a,b,c là độ dài 3 cạnh của tam giác.ta có:
\(\frac{a}{b+c}<\frac{2a}{a+b+c}\)
\(\frac{b}{c+a}<\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}<\frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên vế theo vế ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)
Từ (1) và (2) => đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2+d^2}\left(\text{đpcm}\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có
\(VT=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\cdot k^2+b^2}{d^2\cdot k^2+d^2}=\frac{b^2\cdot\left(k^2+1\right)}{d^2\cdot\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(VT=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}=\frac{b^2\cdot\left(k^2-1\right)}{d^2\cdot\left(k^2-1\right)}=\frac{b^2}{d^2}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)