K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Bất đẳng thức cần chứng minh tương đương với: \(\dfrac{2}{3}a^2-\dfrac{4}{3}ab+\dfrac{2}{3}b^2\ge0\Leftrightarrow\dfrac{2}{3}\left(a-b\right)^2\ge0\) (luôn đúng với mọi a, b).

22 tháng 7 2023

Bài 1:

\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)

2:

a: =-(x^2-3x+1)

=-(x^2-3x+9/4-5/4)

=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn

b: =-2(x^2+3/2x+3/2)

=-2(x^2+2*x*3/4+9/16+15/16)

=-2(x+3/4)^2-15/8<0 với mọi x

21 tháng 6 2023

a) Ta có A = 1 + 21 + 22 + ... + 22021

           2A = 21 + 22 + 23 + ... + 22022

Vậy 2A = 21 + 22 + 23 + ... + 22022

b) 2A - A = ( 21 + 22 + 23 + ... + 22022 ) - ( 1 + 21 + 22 + ... + 22021 )

           A = 22022 - 1

Vậy A = 22022 - 1

21 tháng 6 2023

a)

\(A=1+2^1+2^2+2^3+...+2^{2020}+2^{2021}\)

\(2A=2^1+2^2+2^3+2^4+...+2^{2021}+2^{2022}\)

b)

\(2A=2^1+2^2+2^3+...+2^{2022}\)

\(2A-A=\left(2^1+2^2+2^3+...+2^{2022}\right)-\left(1+2^1+2^2+....+2^{2021}\right)\)

\(A=2^{2022}-1\)

=> đpcm

15 tháng 10 2016

2A=2^2+2^3+2^4+....+2^101

2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)

1A=2^101 - 2

A= 2^101-2

15 tháng 10 2016

mình chỉ làm được câu A thôi

A=2+2^2+2^3+...+2^100

A=2^(1+2+3+...+100)

Tính (1+2+3+...+100)

([100-1]/1+1)/2+(1+100)=5050

A=2^5050

A=25502500

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

26 tháng 7 2023

\(B=1+3+3^2+3^3+3^4+...+3^{2006}\)

\(\Rightarrow3B=3\left(1+3+3^2+...+3^{2006}\right)\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2007}\)

26 tháng 7 2023

B=1+3+...+32006

=>3B=3+32+...+32007

A=(32007-1):2=32007:2-3:2

Để chứng minh rằng A={3^2007-1}:2, ta cần chứng minh hai phần:

1. Chia hết cho 2:
Ta có 3^2007-1 là số lẻ vì 3^2007 là số lẻ và 1 là số chẵn. Vì vậy, A chia hết cho 2.

2. Không chia hết cho 4:
Ta sẽ chứng minh rằng 3^2007-1 không chia hết cho 4.
Ta biết rằng 3^2 ≡ 1 (mod 4) (vì 3^2 = 9 ≡ 1 (mod 4))
Do đó, ta có thể viết lại 3^2007-1 = (3^2)^1003-1 = (3^2-1)(3^2)^1002+1 = 8k+1 với k là số nguyên.
Vì vậy, A không chia hết cho 4.

Từ hai phần trên, ta có thể kết luận rằng A={3^2007-1}:2.

a) Có A=2+22+23+24+...+2100

             = 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)

             =2.15+25.15+29.15+...+296.15

             =15(2+25+29+...+296)

=> A \(⋮\) 15 

b)

A=2+22+23+.....+2100

   =  (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

   = 1.30 + 24.30 + ..... + 296.30

   = 30.(1+34+...+296)

=>A\(⋮\) 30 < = > A \(⋮\) 10

< = >A có tận cùng là 0 

NV
5 tháng 5 2021

\(\dfrac{9}{4}=ab+a+b+1\le\dfrac{1}{4}\left(a+b\right)^2+a+b+1\)

\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-5\ge0\)

\(\Leftrightarrow\left(a+b-1\right)\left(a+b+5\right)\ge0\)

\(\Leftrightarrow a+b-1\ge0\) (do \(a+b+5>0\))

\(\Rightarrow a+b\ge1\)

b.

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{2}.1^2=\dfrac{1}{2}\) (đpcm)