K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

vote cho mk đi vote lại cho ok

26 tháng 10 2019

help me please

31 tháng 10 2018

cau a la bdt vas

con cau b la van dung he qua cua bdt vas

Đây mà là tiếng việt lớp 3 à

22 tháng 4 2021

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\) Thì bài toán thành chứng minh

\(3\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng holder ta có:

\(\left(\sqrt{\frac{a+b}{2c}}+\sqrt{\frac{b+c}{2a}}+\sqrt{\frac{c+a}{2b}}\right)^2\left(2c\left(a+b\right)^2+2a\left(b+c\right)^2+2b\left(c+a\right)^2\right)\)

\(\ge\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^3=8\left(a+b+c\right)^3\)

\(\Rightarrow VT\ge3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\)

Từ đây ta cần chứng minh:

\(3.\frac{8\left(a+b+c\right)^3}{2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2}\ge\frac{8\left(a+b+c\right)^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow2a\left(b+c\right)^2+2b\left(c+a\right)^2+2c\left(a+b\right)^2\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)( đúng )

Vậy có ĐPCM

29 tháng 4 2019

cảm ơn bạn nhiều

NV
17 tháng 11 2019

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

17 tháng 11 2019

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước

11 tháng 1 2016

Áp dụng BĐT cô si với ba số không âm ta có :

\(\frac{1}{\left(x+1\right)^2}+\frac{x+1}{8}+\frac{x+1}{8}\ge3\sqrt[3]{\frac{1}{64}}=\frac{3}{4}\)

=> \(\frac{1}{\left(x+1\right)^2}\ge\frac{3}{4}-\frac{x+1}{4}\) (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " \(\frac{1}{\left(y+1\right)^2}\ge\frac{3}{4}-\frac{y+1}{4}\)(2) ; \(\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}-\frac{z+1}{4}\) (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\cdot3-\frac{x+y+z+3}{4}\)\(\ge\frac{9}{4}-\frac{3\sqrt[3]{xyz}+3}{4}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}\)

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

 

đặt \(P=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(z+x\right)}+\frac{xy}{z^2\left(x+y\right)}\)

áp dụng bất đẳng thức cô si ta có:

\(\frac{yz}{x^2\left(y+z\right)}+\frac{y+z}{4yz}\ge\frac{1}{x};\frac{zx}{y^2\left(z+x\right)}+\frac{z+x}{4zx}\ge\frac{1}{y};\frac{xy}{z^2\left(x+y\right)}+\frac{x+y}{4xy}\ge\frac{1}{z}\)

\(\Rightarrow P+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=\frac{3}{2}\left(Q.E.D\right)\)

dấu bằng xảy ra khi x=y=z=1