Cho hàm số x2-2(m-1)x+1-3m. Tìm m để hàm số đồng biến trên (2, +∞) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$
Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$
$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$
$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$
$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$
$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$
Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.
b.
Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:
$(m^2-3m+2)(x_1+x_2)+(m-1)>0$
Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:
$m^2-3m+2=0$ và $m-1>0$
$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$
$\Leftrightarrow m=2$
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
a: Để hàm số đồng biến trên R thì \(m^2-4>0\)
=>\(m^2>4\)
=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)
=>\(m^2< 4\)
=>-2<m<2
a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến
⇔ 3m - 1 > 0
⇔ 3m > 1
⇔ m > 1313
Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến
b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến
⇔ 3m - 1 < 0
⇔ 3m < 1
⇔ m < 1313
Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến
c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:
3 = (3m - 1).2 + 2 (m ≠≠ 1313)
⇔ 3 = 6m - 2 + 2
⇔ 3 = 6m
⇔ m = 1212 (t/m)
Vậy m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)
Để hàm số đồng biến với mọi x > 0 thì a > 0
nên 4 – 3m > 0 ⇔ 4 > 3m
⇔ 3m < 4 ⇔ m < 4 3
Vậy m < 4 3 thỏa mãn điều kiện đề bài
Đáp án cần chọn là: C