K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

Bn Nguyễn Tuấn Minh làm đúng rồi đó bạn

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

19 tháng 4 2017

 \(\frac{3}{2}+\frac{3}{14}+\frac{3}{15}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)

 \(\frac{6}{\left(1.2\right).2}+\frac{6}{\left(2.7\right).2}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)

 \(\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)


\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(x-3\right).x}=\frac{96}{49.2}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(x-3\right)}-\frac{1}{x}=\frac{96}{98}\)

=> \(1-\frac{1}{x}=\frac{48}{49}\)

=> \(\frac{1}{x}=\frac{1}{49}\)

=> \(x=49\)

15 tháng 10 2019

từ a+b=0,03 => a= 0,03-b

Thay R=M+1 và a=0,03-b vào phương trình ta dc

(0,03-b)(2M+2+96)+b+(M+1+96)=3,82

=> Nhân ra rồi tìm a,b,M

15 tháng 10 2019

ko ra ạ