\(\sqrt{2}\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)
1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)
4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)
6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)
7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)
a, \(\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}\)
\(=\left|\sqrt{2}-1\right|+\left|3\sqrt{2}-2\right|\)
\(=\sqrt{2}-1+3\sqrt{2}-2=4\sqrt{2}-3\)
b, \(2\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2\sqrt{3}+1\right)^2}\)
\(=2\left|\sqrt{3}-1\right|-\left|2\sqrt{3}+1\right|\)
\(=2\sqrt{3}-2-2\sqrt{3}-1=-3\)
`A=sqrt{(5-sqrt3)^2}+sqrt{(2-sqrt3)^2}`
`=5-sqrt3+2-sqrt3`
`=7-2sqrt3`
`B=sqrt{(3-sqrt2)^2}-sqrt{(1-sqrt2)^2}`
`=3-sqrt2-(sqrt2-1)`
`=4-2sqrt2`
`C=sqrt{(3+sqrt7)^2}-sqrt{(2-sqrt7)^2}`
`=3+sqrt7-(sqrt7-2)`
`=5`
`D=sqrt{4-2sqrt3}+sqrt{7+4sqrt3}`
`=sqrt{3-2sqrt3+1}+sqrt{4+2.2.sqrt3+3}`
`=sqrt{(sqrt3-1)^2}+sqrt{(2+sqrt3)^2}`
`=sqrt3-1+2+sqrt3=1+2sqrt3`
\(A=\left|5-\sqrt{3}\right|+\left|2-\sqrt{3}\right|=5-\sqrt{3}+2-\sqrt{3}=7-2\sqrt{3}\)
\(B=\left|3-\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
\(C=\left|3+\sqrt{7}\right|-\left|2-\sqrt{7}\right|=3+\sqrt{7}-\sqrt{7}+2=5\)
\(D=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\left|\sqrt{3}-1\right|+\left|2+\sqrt{3}\right|\)
\(=\sqrt{3}-1+2+\sqrt{3}=1+2\sqrt{3}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)
\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)
\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)
\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)
\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)
\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)
Lời giải:
a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$
$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$
$=3-\sqrt{7}$
c.
$=|x-3|=x-3$
d.
$=|1-x|=x-1$
$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.
$=\sqrt{(10a)^2}=|10a|=-10a$
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}\cdot1+1}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
\(=2\)
\(1,=\left|1-\sqrt{2}\right|+\left|\sqrt{2}+3\right|\\ =1-\sqrt{2}+3+\sqrt{2}\\ =4\\ 2,=\left|\sqrt{3}-2\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}-2+\sqrt{3}-1\\ =2\sqrt{3}-3\\ 3,=\left|\sqrt{5}-3\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{5}-3+\sqrt{5}-2\\ =2\sqrt{5}-5\\ 4,=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =3+\sqrt{3}\\ 5,=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\\ =2-\sqrt{3}-\left(2+\sqrt{3}\right)\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)
b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)
d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{12}-\sqrt{2}-1\)
e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)
P/S: Ko chắc
`F=sqrt{(3-sqrt2)^2}+sqrt{(1-sqrt2)^2}``
`=3-sqrt2+sqrt2-1=2`
`G=sqrt{(5+sqrt7)^2}-sqrt{(2-sqrt7)^2}`
`=5+sqrt7-(sqrt7-2)`
`=5+sqrt7-sqrt7+2=2`
`H=sqrt{(3-sqrt{10})^2}+sqrt{(2-sqrt{10})^2}`
`=sqrt{10}-3+sqrt{10}-2`
`=2\sqrt{10}-5`
\(F=\left|3-\sqrt{2}\right|+\left|1-\sqrt{2}\right|=3-\sqrt{3}+\sqrt{2}-1=2\)
\(G=\left|5+\sqrt{7}\right|-\left|2-\sqrt{7}\right|=5+\sqrt{7}-\sqrt{7}+2=7\)
\(H=\left|3-\sqrt{10}\right|+\left|2-\sqrt{10}\right|=\sqrt{10}-3+\sqrt{10}-2=2\sqrt{10}-5\)
\(=\sqrt{2}\sqrt{2-\sqrt{3}}\)\(+\sqrt{2}\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4-2\sqrt{3}}\)\(+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|\)\(+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1\)
\(=2\sqrt{3}\)