CHO a/k = x/a và b/k = y/k
Chứng minh : a^2/b^2 = x/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/k=x/a
=>a.a=x.k
=>a2=kx
b/k=y/b
=>b.b=y.k
=>b2=yk
=>\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\left(đpcm\right)\)
Ta có:
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\) (1)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\) (2)
Chia (1) cho (2) ta được:
\(\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có :
\(\begin{cases}\frac{a}{k}=\frac{x}{a}\\\frac{b}{k}=\frac{y}{b}\end{cases}\)
\(\Rightarrow\begin{cases}a^2=kx\\b^2=ky\end{cases}\)
Chia về theo vế
\(\Rightarrow a^2:b^2=\left(kx\right):ky\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\)
Ta có
\(\frac{a}{k}=\frac{x}{a}<=>a^2=x.k\)
\(\frac{b}{k}=\frac{y}{b}<=>b^2=k.y\)
=>\(\frac{a^2}{b^2}=\frac{x.k}{k.y}=\frac{x}{y}\)
tick nha
\(\frac{a}{k}=\frac{x}{a}\Leftrightarrow a^2=kx\)
\(\frac{b}{k}=\frac{y}{b}\Leftrightarrow b^2=ky\)
\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
Ta có: \(\frac{a}{k}=\frac{x}{a};\frac{b}{k}=\frac{y}{b}\)
=> a2 = x.k; b2 = y.k
=> \(\frac{a^2}{b^2}=\frac{x.k}{y.k}=\frac{x}{y}\left(đpcm\right)\)
a/k = x/a => a2 = kx (1)
b/k = y/b => b2 = ky (2)
chia (1) cho (2) có;
a2/b2 =x/y