K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Ta di chung minh

\(\frac{1}{x^2+y^2+1}+\frac{1}{y^2+z^2+1}+\frac{1}{z^2+x^2+1}\le1\)

\(\Leftrightarrow\frac{x^2+y^2}{x^2+y^2+1}+\frac{y^2+z^2}{y^2+z^2+1}+\frac{z^2+x^2}{z^2+x^2+1}\ge2\)

\(VT\ge\frac{\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2}{2\left(x^2+y^2+z^2\right)+3}\left(1\right)\)

Gio chung minh:

\(VT_{\left(1\right)}\ge2\)

\(\Leftrightarrow\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2\ge4\left(x^2+y^2+z^2\right)+6\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}+\sqrt{\left(y^2+z^2\right)\left(z^2+x^2\right)}+\sqrt{\left(z^2+x^2\right)\left(x^2+y^2\right)}\ge x^2+y^2+z^2+3\left(2\right)\)

Ta co:

\(\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}=\sqrt{\left(x^2+y^2\right)\left(z^2+y^2\right)}\ge zx+y^2\)

The same

\(\Rightarrow VT_2\ge x^2+y^2+z^2+xy+yz+zx\)

Chung minh:

\(VT_2\ge x^2+y^2+z^2+3\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Ta lai co:

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)

Dau '=' xay ra khi \(x=y=z=1\)

11 tháng 11 2019

MaiLink hình như sai rồi bạn, dòng 5 bị ngược dấu

4 tháng 12 2018

\(\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{z+x}{xyz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

Làm nốt

2 tháng 10 2019

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem

3 tháng 1 2020

1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)

Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)

Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)

Với x + y = -4  thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)

\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)

Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm 

2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\)   với a,b > 0 

Thật vậy, xét hiệu : 

\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0

Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự : ....

\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy GTLN của biểu thức là 1 khi x = y = z = 1

23 tháng 8 2020

Bài làm:

Ta có: \(x+\frac{1}{y}+y+\frac{1}{z}+z+\frac{1}{x}=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+2\sqrt{z.\frac{1}{z}}=2+2+2=6\)

Mà theo đề bài: \(x+\frac{1}{y}+y+\frac{1}{z}+z+\frac{1}{x}=6\)

Nên dấu "=" xảy ra khi: \(x=\frac{1}{x}\) ; \(y=\frac{1}{y}\) ; \(z=\frac{1}{z}\)

\(\Rightarrow x=y=z=1\)

30 tháng 12 2019

Hướng dẫn:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\left(1\right)\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\left(2\right)\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\left(3\right)\end{cases}}\)

ĐK: \(x;y;z;x+y;y+z;z+x\ne0\)

TH1: x + y + z = 0

=>  y + z = - x

thế vào (1); \(\frac{1}{x}+\frac{1}{-x}=\frac{1}{2}\)vô lí

TH2: x + y + z \(\ne\)0.

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y+z}{xy+xz}=\frac{1}{2}\\\frac{x+y+z}{yz+xy}=\frac{1}{3}\\\frac{x+y+z}{xz+yz}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{xy+xz}{x+y+z}=2\\\frac{yz+xy}{x+y+z}=3\\\frac{xz+yz}{x+y+z}=4\end{cases}}\)

Đặt : x + y + z = k

=> \(\hept{\begin{cases}xy+xz=2k\left(4\right)\\yz+xy=3k\left(5\right)\\xz+yz=4k\left(6\right)\end{cases}}\)<=> \(\hept{\begin{cases}xy=\frac{1}{2}k\\yz=\frac{5}{2}k\\xz=\frac{3}{2}k\end{cases}}\Leftrightarrow\hept{\begin{cases}2xy=k\\\frac{2yz}{5}=k\\\frac{2xz}{3}=k\end{cases}}\)

Trừ vế theo vế:

=> \(\hept{\begin{cases}x=\frac{z}{5}\\\frac{y}{5}=\frac{x}{3}\\\frac{z}{3}=y\end{cases}}\)<=> \(z=3y=5x\)thế vào (1)  rồi tìm x; y ; z.

\(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\)

<=> \(\frac{23}{20x}=\frac{1}{2}\Leftrightarrow x=\frac{23}{10}\)

khi đó: \(y=\frac{5x}{3}=\frac{23}{6};z=5x=\frac{23}{2}\)thử lại thỏa mãn.