K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.

 

13 tháng 2 2017

hình( tự vẽ)

a) Chú ý: \(\widehat{AEB}=\widehat{AFB}=90\)(góc chắn nửa đường tròn) => H là trực tâm tam giác ABC

=> tứ giác AIFC nội tiếp (do \(\widehat{AIC}=\widehat{AFC}=90\)) => góc CIF= góc CAF

mà góc CAF=\(\frac{1}{2}\)góc EOF

mà EF=R => tam giác OEF đều => EOF =60 => CIF=30

b)

tam giác vuông AIC đồng dạng với tam giác vuông AEB (g-g)

=> AE.AC=AI.AB

Tương tự tam giác BIC đồng dạng BFA

=> BF.BC=BI.AB

Vậy: AE.AC+BF.BC=AB(AI+IB)=AB\(^2\)=4R\(^2\)=const (ĐPCM)

14 tháng 2 2017

Sorry , mk ms học lớp 6 ... 
Have a nice day !!!