Tính : \(1^2+2^2+3^2+....+100^2\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
A=1-2-3+4+5-6-7+8+...+97-98-99+100
=>A=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=>A=0+0+....+0=0
vậy A=0
B=1-2+2^2-2^3+...+2^100
=>2B=2-2^2+2^3-2^4+....+2^101
=>2B+B=1-2^101=3B
=>B=1-2^101/3
C= 2^100-2^99-2^98-...-2^2-2-1
=>C=2^100-(2^99+2^98+.....+2^2+2+1)
Đặt D=2^99+2^98+.....+2^2+2+1
=>2D=2^100+2^99+.....+2^3+2^2+2
=>2D-D=2^100-1=D
=>C=2^100-(2^100-1)=1
tick nha
hic!ngày kia phải nộp rồi ! mọi người giúp mình nhanh nha!
\(A=\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{7^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\left(\dfrac{1}{49}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{10000}\right)\)
=0
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
đặt A=1+2+2^2+2^3+...+2^99+2^100
=>2A=2+2^2+2^3+...+2^100+2^101
=>2A-A=2+2^2+2^3+...+2^100+2^101=(1+2+2^2+2^3+...+2^99+2^100)
=>A=2+2^2+2^3+...+2^100+2^101-1-2-2^2-2^3-...-2^99-2^100
=2^101-1
vậy1+2+2^2+2^3+...+2^99+2^100=2^101
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)
a, S= 1.2 + 2.3 + 3.4 + 4.5 + 99.100
-S= 1/1 - 1/2 + ......... + 1/4 -1/5 + [-(99.100)]
= 1/1 - 1/5 + [-(99.100)]
= 4/5 - 99/100
=-19/100
S = 19/100
Vậy S = 19/100
k mk nha
a) \(S=1.2+2.3+...+99.100\)
\(\Rightarrow3S=1.2.3+2.3.3+...+99.100.3\)
\(=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)
\(=99.100.101\)
\(=999900\)
\(\Rightarrow S=\frac{999900}{3}=333300\)
TL
Đặt A= 1 + 2^2 + 3^2 + 4^2 + ... + 100^2
= 1.1 + 2.2 + 3.3 +...+ 100.100
= 1 ( 2-1) + 2. (3-1) + 3. (4-1) +... + 100 (101 -1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 +...+ 100. 101 - 100
= (1.2 + 2.3 + 3.4 + ... + 100. 101) - (1 + 2 + 3+... + 100)
*) Xét: 1.2 + 2.3 + 3.4 + ... + 100. 101
Đặt B = 1.2 + 2.3 + 3.4 + ... + 100. 101
3B = 3( 1.2 + 2.3 + 3.4 + ... + 100. 101)
= 1.2.3 + 2.3.3 + 3.4.3 +... + 100.101.3
= 1.2.3 + 2.3. (4-1) + 3.4.(5-2) +...+ 100.101.(102-99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 100.101.102 - 99.100.101
= 100.101.102
B= 343400
*) Xét: 1 + 2 + 3+... + 100
Đặt C= 1 + 2 + 3+... + 100
Bạn tự tính nha!
......
=> C= 5050
Ta có: A = B + C
= 343400 + 5050
= 348450
Vậy A = 348450
Hok tốt nha bn
#Kirito
đặt A = 1\(^2\)+ 2\(^2\)+ 3\(^2\)+ ... 100\(^2\)
A= 1.1+2.2+3.3+...+100.100
a=1
chúc bạn học tốt