K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

a) N đối xứng với I qua P => NP vuông góc với AB => Góc NPB = 90

CMTT: Góc NQB = 90

Xét tứ giác BPNQ có 3 góc vuông => BPNQ là hình chữ nhật.

b) BPNQ là hình chữ nhật => PN = BQ = IN (I đối xứng với N qua P) ; BP = QN = QK (N đối xứng với K qua Q)

Xét tam giác IPB và tam giác BQK có IP = BQ, BP = KQ, góc IPB = góc BQK = 90

=> Hai tam giác bằng nhau => IBP = BKQ , BIP = KBQ, IB = KB

Góc IBK = IBP + PBQ + QBK = 90 + 90 = 180

=> I, B, K thẳng hàng ; mà IB = BK => B là trung điểm IK

c) BPNQ là hình vuông => BP = PN = NQ = QB <=> 2BP = 2PN = 2NQ = 2QB <=> AB = BC

Vậy tam giác ABC vuông cân tại B thì BPNQ là hình vuông.

d) Gọi giao điểm của AK và BN là O. Ta cần c/m : CI cắt BN tại O

Xét tứ giác ANKB có AB = NK (= 2PB) , AB // NK (PB // NQ)

=> ABKN là hình bình hành => AK cắt BN tại trung điểm của mỗi đường <=> O là trung điểm BN

CMTT ta có INCB ;à hình bình hành => IC cắt BN tại trung điểm của mỗi đường => IC cắt BN tại O

=> AK, BN, CI đồng quy tại O

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC