x/4 = y/8 và x.y = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)
=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)
Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):
\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)
\(\Rightarrow\) \(x-y=0\)
\(\Rightarrow\left(x-y\right)^3=0^3=0\)
a) x . y = 13 nên x ∈ U 13 và y ∈ U 13 do đó ta có x ; y ∈ 1 ; 13 ; 1 3 ; 1 ; − 1 ; − 13 ; − 13 ; − 1
b) x . y = 8 và x < y ; x ∈ U 8 ; y ∈ U 8 do đó ta có x ; y ∈ − 8 ; − 1 ; − 4 ; − 2 ; 1 ; 8 ; 2 ; 4
a) x . y = 13 nên x ∈ U 13 và y ∈ U 13 do đó ta có x ; y ∈ 1 ; 13 ; 1 3 ; 1 ; − 1 ; − 13 ; − 13 ; − 1
b) x . y = 8 v à x < y , x ∈ U 8 , y ∈ U 8 do đó ta có x ; y ∈ − 8 ; − 1 ; − 4 ; − 2 ; 1 ; 8 ; 2 ; 4
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
\(\frac{x}{4}=\frac{y}{8}\Rightarrow\frac{x^2}{16}=\frac{y^2}{64}=\frac{xy}{32}=\frac{5600}{32}=175\left(1\right)\)
(=> tìm x,y
Ta có: x/4 = y/8 = x.y/ 4.8 = 5600/32 = 175 (1)
Từ (1) => x = 700 ; y = 1400
k nha
1) \(\left(x-4\right)\left(y+1\right)=8\)
Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên
ta có bảng giá trị:
x-4 | 1 | 2 | 4 | 8 |
y+1 | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
y | 7 | 3 | 1 | 0 |
2) \(\left(2x+3\right)\left(y-2\right)=15\)
Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị:
2x+3 | 3 | 5 | 15 |
y-2 | 5 | 3 | 1 |
x | 0 | 1 | 6 |
y | 7 | 9 | 3 |
3) \(xy+2x+y=12\)
\(\Leftrightarrow x\left(y+2\right)+y+2=14\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)
Tiếp tục bạn làm tương tự 1) và 2).
4) \(xy-x-3y=4\)
\(\Leftrightarrow y\left(x-3\right)-x+3=7\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)
Tiếp tục bạn làm tương tự 1) và 2).
Ta có : 4xy + 4y = 8
=> 4(xy + y) = 8
=> xy + y = 2
=> y(x + 1) = 2
=> y = \(\frac{2}{x+1}\)
Mà : y là số nguyền nên : \(\frac{2}{x+1}\) nguyên
Nên 2 chia hết cho x + 1
=> x + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
x + 1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y = \(\frac{2}{x+1}\) | -1 | -2 | 2 | 1 |
ta có : 4.x.y + 4.y = 4.(x.y + y) = 8
=> x.y + y = 8:4 = 2
=> y.(x+1) = 2
Mà x,y thuộc Z
=> y.(x+1) = 1.2 = 2.1=2
-) nếu y=1 => (x+1) = 2 => x=2-1=1 (chọn)
-) nếu y=2 => (x+1) =1 => x=1-1 = 0 (chọn)
vậy ta tìm đc 2 cặp số (x;y) thỏa mãn là: (1;2) ; (2;1)