Cho x/z = z/y chứng minh
Giúp ạ
(X^2+z^2)/(y^2+z^2)=x/ z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 0
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0
<=> x - y = 0 và y - z = 0 và z - x = 0
<=> x = y và y = z và z = x
<=> x = y = z
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
= x/y mới đúng chứ nhỉ ? Có sai đề không thế ?
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow x=zk;z=yk\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+\left(yk\right)^2}=\frac{z^2.k^2+y^2.k^2}{y^2+y^2.k^2}=\frac{k^2\left(z^2+y^2\right)}{y^2\left(k^2+1\right)}=\)
\(=\frac{k^2\left[\left(yk\right)^2+y^2\right]}{y^2\left(k^2+1\right)}=\frac{k^2\left(y^2.k^2+y^2\right)}{y^2\left(k^2+1\right)}=\frac{k^2.y^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=k^2\left(1\right)\)
Lại có : \(\frac{x}{z}=k\left(2\right)\)
Từ (1) và (2) => \(\frac{x^2+y^2}{y^2+z^2}=\left(\frac{x}{z}\right)^2\)