Tính
a) (x2-3x+xy-3y) : (x+y)
b) (x2-y2+6x+9) : (x+y+3)
c) (8x3-1) : ( 4x2-2x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Bài 1
a) (15x4 - 8x3 + 3x2) : 3x2 = 15x4 : 3x2 - 8x3 : 3x2 + 3x2 : 3x2 = 5x2 - \(\dfrac{8}{3}x\) + 1
b) (4x2 - 4xy + y2) : (2x - y) = (2x - y)2 : (2x - y) = 2x - y
c) dùng phương pháp chia đa thức 1 biến đã sắp xếp nha
d) (x2 - 2x + 1) : (x - 1) = (x - 1)2 : (x - 1) = x - 1
Bài 2
a) x2 + 3x + 3xy + 9xy = x2 + 3x + 12xy = x (x + 3 + 4y)
b) x2 - y2 + 2x + 1 = x2 + 2x + 1 - y2 = (x + 1)2 - y2 = (x + 1 - y)(x + 1 + y)
c) x2 - xy + x - y = x (x - y) + (x - y) = (x - y)(x + 1)
x4,x2,y2 là mũ nhá các bn
giúp mk nhanh lên mình sắp phải nộp r
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
a ) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)\)
\(=\left(2x+y\right)^2:\left(2x+y\right)\)
\(=2x+y\)
b ) \(\left(27x^3+1\right):\left(3x+1\right)\)
\(=\left(3x+1\right)\left(9x^2-3x+1\right):\left(3x+1\right)\)
\(=9x^2-3x+1\)
c ) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)\)
\(=\left(x-3y\right)^2:\left(3y-x\right)\)
\(=\left(3y-x\right)^2:\left(3y-x\right)\)
\(=3y-x\)
d ) \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right):\left(4x^2+2x+1\right)\)
\(=2x-1\)
:D
\(a.2x\left(x-1\right)-3\left(x^2+4x\right)+x\left(x+2\right)\)
\(=2x^2-2x-3x^2-12x+x^2+2x\)
\(=-12x\)
\(b.\left(2x-3\right)\left(3x+5\right)-\left(x-1\right)\left(6x+2\right)+3-5x\)
\(=6x+10x-9x^2-15-6x^2-2x-6x-2+3-5x\)
\(=-15x^2+3x-14\)
\(c.\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-y^2\right)\)
\(=x^3-y^3-x^3+y^3+x^2y-y^3\)
\(=y^3+x^2y\)
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
ta có:
a) (x2 - 3x + xy - 3y) : (x + y)
= [x(x - 3) + y(x - 3)] : (x + y)
= (x + y)(x - 3) : (x + y)
= x - 3
b) (x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3