K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4

        5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4

        5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4

suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4

Vậy 5^n - 1 chia hết cho 4 với n thuộc N

tk mk nha

9 tháng 2 2017

5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1

=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4

5 tháng 7 2019

Cho n số x1; x2;...; xn mỗi số nhận giá trị 1 hoặc -1

=> x1.x2; x2.x3; x3.x4;...; xn.x1 sẽ nhận các giá trị là -1 hoặc 1

Theo bài ra ta có:

 x1.x2+ x2.x3+x3.x4+...+ xn.x1=0

=> Trong n hạng tử trên sẽ có k hạng tử mà mỗi hạng tử bằng 1 và k hạng tử mà mỗi hạng tử bằng -1 với k là số tự nhiên lớn hơn 1

=>  n=2k

Mặt khác ta có: (x1.x2)(x2.x3)...(xn.x1)=(x1)^2.(x2)^2....(xn)^2=1

=> (-1)^k. (1)^k=1

<=> (-1)^k=1

<=> k là số chẵn

=> k chia hết cho 2

=> n chia hết cho 4

21 tháng 6 2017

kb nha Nguyễn Thiên Kim

19 tháng 10 2014

mình bt giải 1 cách hà

(15a + 15b) chia hết cho 15

( (9a + 6b) + (6a + 9b) ) chia hết cho 15

( (9a+6b) +3(2a+3b) chia hết cho 15 (1)

Theo bài ta có: (2a + 3b) chia hết cho 15

\(\Rightarrow\)3(2a + 3b) chia hết cho 15       (2)

từ (1) và (2)

\(\Rightarrow\) 9a +6b chia hết cho 15

14 tháng 8 2021

1.

\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)

Mặt khác:

\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)

\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)

14 tháng 8 2021

2.

Đề đúng chưa.

Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.

1 tháng 9 2015

a) 3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2-2n)

=3n(33+1)-2n(22+1)

=3n.10-2n.5

Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10

    3n.10 chia hết cho 10 nên 

3n.10-2n.5 chia hết cho 10

=>3n+2-2n+2+3n-2n chia hết cho 10

b)

  3n+3+3n+1+2n+3+2n+2

=3n+1(32+1)+2n+2(2+1)

=3n+1.2.5+2n+1.3

=3.2.3n.5+2.3.2n+1

=3.2(3n.5+2n+1) chia hết cho 6

NV
9 tháng 3 2021

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu