Chứng minh rằng: tồn tại n để
5^n - 1 chia hết 49^2012
Đậu xanh bài khó quá, ae nào làm được thì giúp mình cái nhẹ! thánks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
Cho n số x1; x2;...; xn mỗi số nhận giá trị 1 hoặc -1
=> x1.x2; x2.x3; x3.x4;...; xn.x1 sẽ nhận các giá trị là -1 hoặc 1
Theo bài ra ta có:
x1.x2+ x2.x3+x3.x4+...+ xn.x1=0
=> Trong n hạng tử trên sẽ có k hạng tử mà mỗi hạng tử bằng 1 và k hạng tử mà mỗi hạng tử bằng -1 với k là số tự nhiên lớn hơn 1
=> n=2k
Mặt khác ta có: (x1.x2)(x2.x3)...(xn.x1)=(x1)^2.(x2)^2....(xn)^2=1
=> (-1)^k. (1)^k=1
<=> (-1)^k=1
<=> k là số chẵn
=> k chia hết cho 2
=> n chia hết cho 4
mình bt giải 1 cách hà
(15a + 15b) chia hết cho 15
( (9a + 6b) + (6a + 9b) ) chia hết cho 15
( (9a+6b) +3(2a+3b) chia hết cho 15 (1)
Theo bài ta có: (2a + 3b) chia hết cho 15
\(\Rightarrow\)3(2a + 3b) chia hết cho 15 (2)
từ (1) và (2)
\(\Rightarrow\) 9a +6b chia hết cho 15
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
a) 3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2-2n)
=3n(33+1)-2n(22+1)
=3n.10-2n.5
Vì 2.5 chia hết cho 10 nên 2n.5 cũng chia hết cho 10
3n.10 chia hết cho 10 nên
3n.10-2n.5 chia hết cho 10
=>3n+2-2n+2+3n-2n chia hết cho 10
b)
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2(3n.5+2n+1) chia hết cho 6
Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)
Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k
Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017
- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)
- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)
\(\Rightarrow2^j-2^i⋮2017\)
\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)
\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)
\(\Rightarrow n=j-i\) thỏa mãn yêu cầu