\(\sqrt[3]{x+45}+\sqrt[3]{x-16}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
Giải phương trình vô tỉ
1) \(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2) \(\sqrt[3]{x+45}-\sqrt[3]{x-16}=1\)
Câu 1:
ĐK: \(0\leq x\leq 1\)
Áp dụng bđt Bunhiacopxky:
\(\text{VT}^2=(\sqrt{1-\sqrt{x}}+\sqrt{4+x})^2\leq [1-\sqrt{x}+\frac{4+x}{2}](1+2)\)
\(\Leftrightarrow \text{VT}^2\leq 3\left(3+\frac{x-2\sqrt{x}}{2}\right)\)
Vì \(0\leq x\leq 1\Rightarrow x-2\sqrt{x}\leq \sqrt{x}-2\sqrt{x}=-\sqrt{x}\leq 0\)
Do đó: \(\text{VT}^2\leq 3.3=9\Rightarrow \text{VT}\leq 3\)
Dấu bằng xảy ra khi :
\(\frac{\sqrt{1-\sqrt{x}}}{1}=\frac{\sqrt{4+x}}{2}; x=\sqrt{x}\Rightarrow x=0\)
2)
\(\sqrt[3]{x+45}-\sqrt[3]{x-16}=1\)
Đặt \(\sqrt[3]{x+45}=a; \sqrt[3]{x-16}=b\). Ta thu được HPT:
\(\left\{\begin{matrix} a-b=1\\ a^3-b^3=61\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a-b=1\\ (a-b)^3+3ab(a-b)=61\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a-b=1\\ 1+3ab=61\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a-b=1\\ ab=20\end{matrix}\right.\)
Thay \(a=b+1\Rightarrow (b+1)b=20\)
\(\Leftrightarrow b^2+b-20=0\Leftrightarrow (b-4)(b+5)=0\)
\(\Rightarrow \left[\begin{matrix} b=4\rightarrow x=80\\ b=-5\rightarrow x=-109\end{matrix}\right.\)
ĐK : \(x\in R\)
\(\sqrt[3]{x+45}-\sqrt[3]{x-16}=1\)
Lập phương cả hai vế phương trình đã cho ta được :
\(x+45-3\sqrt[3]{\left(x+45\right)\left(x-16\right)}\left(\sqrt[3]{x+45}-\sqrt[3]{x-16}\right)-x+16=1\)
\(\Leftrightarrow3\sqrt[3]{\left(x+45\right)\left(x-16\right)}=60\)
\(\Leftrightarrow\sqrt[3]{\left(x+45\right)\left(x-16\right)}=20\left(a\right)\)
Lập phương phương trình (a) ta được :
\(\left(x+45\right)\left(x-16\right)=8000\)
\(\Leftrightarrow x^2+29x-720-8000=0\)
\(\Leftrightarrow x^2+29x-8720=0\)
\(\Leftrightarrow x^2+2.\frac{29}{2}x+\frac{841}{4}-\frac{841}{4}-8720=0\)
\(\Leftrightarrow\left(x+14,5\right)^2-\frac{35721}{4}=0\)
\(\Leftrightarrow\left(x+14,5+94,5\right)\left(x+14,5-94,5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+109=0\\x-80=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-109\\x=80\end{matrix}\right.\)
Vậy : PT đã cho có : \(S=\left\{-109;80\right\}\)
Cách kia mất thời gian nên em có cách này có vẻ như hay hơn ạ!
ĐK: x thuộc R
Đặt \(\sqrt[3]{x+45}=a;\sqrt[3]{x-16}=b\) thì a > b (do vp >0)
Ta có hệ \(\left\{{}\begin{matrix}a-b=1\\a^3-b^3=\left(a-b\right)\left(a^2+b^2+ab\right)=61\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\a^2+b^2+ab-61=0\end{matrix}\right.\)
Thay a = b + 1 vào cái pt dưới suy ra \(3b^2+3b-60=0\Leftrightarrow3\left(b-4\right)\left(b+5\right)=0\)
Suy ra b = 4 hoặc b = -5
Với b = 4 thì \(\sqrt[3]{x-16}=4\Leftrightarrow x=80\)
Với b =-5 thì \(\sqrt[3]{x-16}=-5\Leftrightarrow x=-109\)
Vẫn ra kết quả y chang nhưng gọn hơn :D
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
Đặt \(\sqrt[3]{x+45}=a\Rightarrow a^3=x+45\)
\(\sqrt[3]{x-16}=b\Rightarrow b^3=x-16\)
Ta có:\(\hept{\begin{cases}a-b=1\\a^3-b^3=61\end{cases}\Rightarrow\hept{\begin{cases}b=a-1\\\left(a-b\right)^3+3ab\left(a-b\right)=61\end{cases}}}\)
\(\Rightarrow1+3a\left(a-1\right)=61\) (vì a-b=1)
\(\Leftrightarrow a^2-a-20=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5\\a=-4\end{cases}\Rightarrow\orbr{\begin{cases}a^3=125\\a^3=-64\end{cases}\Rightarrow}\orbr{\begin{cases}x=80\\x=-109\end{cases}}}\)
Vậy nghiệm của pt là: x=80;x=-109
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)