chứng tỏ rằng
a)tổng của 3 chữ số liên tiếp là một chữ số chia hết cho 3
b)tổng của 4 chữ số liên tiếp là một chữ số không chia hết cho 4
c) tích của 2 chữ số liên tiếp luôn chia hết cho 2
d) tích của 3 chữ số liên tiếp luôn chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3
Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2
=> đpcm
b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.
Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3
Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3
Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn mà số chẵn thì chia hết cho 2
mk chỉ biết vậy thôi
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
TL :
Tham khảo tại : https://olm.vn/hoi-dap/detail/82541634980.html
Hok tốt
a)Gọi 3 số tự nhiên liên tiếp là:1;a+1;a+2 (a thuộc N)
Tổng 3 số tự nhiên liên tiếp là:
S=a+a+1+a+2
=3a+3
Vì 3 chia hết cho 3 =>3a+a chia hết cho 3
hay S chia hết cho 3
Vậy_______________
Bạn tự kết luận nhé!
b)Tương tự câu a