Cho x,y thỏa :\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) 1
Tính P S=2\(\left(x^6+y^6\right)=3\left(x^4+y^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)
\(\Leftrightarrow\left[x^2-\left(\sqrt{x^2+1}\right)^2\right]\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)
\(\Leftrightarrow-y-\sqrt{y^2+1}=x-\sqrt{x^2+1}\) (1)
Lại có:\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y-\sqrt{y^2+1}\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left[y^2-\left(\sqrt{y^2+1}\right)^2\right]=y-\sqrt{y^2+1}\)
\(\Leftrightarrow-x-\sqrt{x^2+1}=y-\sqrt{y^2+1}\) (2)
Từ (1) và (2) cộng vế với vế có:
\(-\left(y+x\right)-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)=x+y-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\) hay S=0
Vậy...
Lời giải:
$xy+\sqrt{(1+x^2)(1+y^2)}=1$
$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$
$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)
$\Leftrightarrow x^2+y^2=-2xy$
$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.
Khi đó:
$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$
$=1+x^2-x^2=1$
bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!