Cho hình vẽ bên có Ax//By .Biết xAM=40,yBM=50.
a,Chứng minh AM vuông góc MB.
b,Gọi N là giao điểm của đường thẳng BM vàAx.Tính số đo góc BNA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.
a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.
Do đó ΔOMP = ΔOMN (c.c.c)
⇒ OA = OH nên OH = a.
Ta suy ra HM = AM và HN = BN.
b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:
HK // MM’ với K ∈ NM’.
Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .
c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)
a: ΔABC vuông cân tại A có AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có CH/CB=CM/CA=1/2
nên HM//AB và HM/AB=CH/CB=1/2
=>HM=1/2AB
c: Xét ΔCDB có
CA,BN là đường cao
CA cắt BN tại M
=>M là trực tâm
=>DM vuông góc BC
=>góc MDB=90-45=45 độ
Xét ΔADM vuông tại A có góc ADM=45 độ
nên ΔADM vuông cân tại A
=>AD=AM
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.