Cho tam giác ABC cân ở A.Gọi M,N lân lượt là trung điểm của AB và AC. CMR: BM=CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P Q
Có: AM=BM(gt)
AN=CN(gt)
=>PQ là đường trung bình của ht BMNC
=>PQ//MN
Bên dưới giải thiếu
Xét ΔABC có:
AM=BM(gt)
AN=CN(gt)
=>MN là đường trung bình
=>MN//BC
=>BMNC là hình thnag
(Xong nối đoạn dưới vào)
anh/chị tự kẻ hình nhé :v
a, t\g BAC vuông cân tại A (gt)
=> AC = CB (đn) và AC _|_ AB (đn) mà AD đối AC
=> AB _|_ AD
xét tam giác ACB và tam giác ADB có : AB chung
AC = AD (gt)
AB _|_ AC và AD => góc CAB = góc DAB = 90
=> tam giác ACB = tam giác ADB (2cgv)
=> BC = DB (đn)
=> tam giác BDC cân tại B (đn)
b, M là trung điểm của BC (gt) => CM = 1/2BC
N là trung điểm của BD (gt) => DN = 1/2DB
mà BC = DB (cmt)
=> CM = DN
xét tam giác CDM và tam giác DCN có : CD chung
góc MCA = góc ADN do tam giác ACB = tam giác ADB (câu a)
=> tam giác CDM và tam giác DCN (c - g - c)
=> CN = DM (đn)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
b: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
Vì tam giác ABC cân tại A
=> AB = AC
=> AB - AM = AC - AM
mà AM = AN
=> AB - AM = AC - AN
hay BM = CN
Vậy BM = CN