Tìm z biết
\(z+\frac{1}{z}\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{y+x+1}=\frac{y}{x+z+1}=\frac{z}{y+z-2}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)
Hay x + y + z = \(\frac{1}{2}\)
\(\frac{x}{y+z+1}=\frac{1}{2}=>2x=y+z+1+=>3x=x+y+z+1=\frac{3}{2}\)
Tương tự tính y = 3/2
z = -3/2
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}\) \(=\frac{x+y+z}{2\left(x+y+z\right)}\)
TH1: Nếu \(x+y+z=0\Rightarrow x=y=z=0\)
TH2: Nếu \(x+y+z\ne0\Rightarrow x+y+z=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
+) \(\frac{x}{y+z+1}=\frac{1}{2}\Rightarrow2x=y+z+1=\frac{1}{2}-x+1=\frac{3}{2}-x\)
\(\Rightarrow2x+x=\frac{3}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3\Rightarrow x=\frac{1}{2}\)
+)\(\frac{y}{x+z+1}=\frac{1}{2}\Rightarrow2y=x+z+1=\frac{1}{2}-y+1=\frac{3}{2}-y\)
\(\Rightarrow2y+y=\frac{3}{2}\Rightarrow3y=\frac{3}{2}\Rightarrow y=\frac{3}{2}:3\Rightarrow y=\frac{1}{2}\)
+) \(\frac{z}{x+y-2}=\frac{1}{2}\Rightarrow2z=x+y-2=\frac{1}{2}-z-2=-\frac{3}{2}-z\)
\(\Rightarrow2z+z=\frac{-3}{2}\Rightarrow3z=\frac{-3}{2}\Rightarrow z=\frac{-3}{2}:3\Rightarrow z=\frac{-1}{2}\)
Vậy \(\left(x,y,z\right)=\left(0,0,0\right)\) hoặc \(\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2}\right)\)
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
Đặt \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}=\frac{\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\\\frac{3}{2}=3y\Rightarrow y=\frac{1}{2}\\-\frac{3}{2}=3z\Rightarrow z=-\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
3/x = x/12 => x2 = 3.12 = 36 => x = 6;-6
-Trường hợp 1:x = 6 thì :3/6 = y+1 /4 => 6(y+1) = 3.4 =12 => y = 12 : 6 -1=1
3/6 = z2-1 /16 => 6(z2-1) = 3.16 =48 => z2 = 48 :6 + 1 = 9 => z = -3 ; 3
-Trường hợp 2:x = -6 thì :3/-6 = y+1 /4 => -6(y+1) = 3.4 =12 => y = 12 :(-6) -1 = -3
3/-6 = z2-1 /16 => -6(z2-1) = 3.16 =48 => z2 = 48 :(-6) + 1 = -7(vô lý)
Vậy x = 6 ; y = 1 ; z = 3 hoặc -3
3/x=x/12=>x2=36=>x=6 hoặc x=-6
*với x=-6 thì -6/12=z2-1/16=>-1/2=z2-1/16
=>z2-1=-8=>z2=-7(loại)
=>x=6=>1/2=y+1/4=>y+1=2=>y=1
=>1/2=z2-1/16=>z2-1=8=>z2=9=>z=3 hoặc z=-9
Dùng tính chất tỉ lệ thức:
\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!