Cho biểu thức: \(P=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)với x\(\ge\)0:x khác 1
a) Rút gọn bt
b) CMR: P>0 với mọi x\(\ge\)0 và x\(\ne\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm luôn.
a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
=\(\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(\frac{3.\left(x+\sqrt{x}\right).\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
mk làm phần rút gọn xong mk bận nên bn tự làm câu b nha ^^
a) Ta có:
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\sqrt{x}-x-2}{\sqrt{x}+1}\div\frac{\left(\sqrt{x}-1\right)\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-\sqrt{x}+\sqrt{x}-4}\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Đề đánh kia ai hiểu được đây, lm đại 3 TH ra nè:
Nếu \(P=\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}+2=2\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Rightarrow x=16\)
Nếu \(P>\frac{1}{2}\) mà \(\sqrt{x}+2>0\left(\forall x\right)\)
\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Rightarrow x>1\)
Nếu \(P< \frac{1}{2}\) mà \(\sqrt{x}+2>0\left(\forall x\right)\)
\(\Rightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Rightarrow x< 1\)
\(M=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)
\(M=-\frac{1}{2}\Leftrightarrow\frac{x}{\sqrt{x}-1}=-\frac{1}{2}\Leftrightarrow2x=1-\sqrt{x}\)
\(\Leftrightarrow2x+\sqrt{x}-1=0\Leftrightarrow\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow2\sqrt{x}-1=0\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
\(M=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(M=\frac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(M=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+2-2+x}\)
\(M=\frac{x\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}+1}\)
b/ \(\frac{x}{\sqrt{x}+1}=\frac{-1}{2}\Leftrightarrow2x=-\sqrt{x}-1\Leftrightarrow2x+\sqrt{x}+1=0\) (vô n)
\(P=\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{2}{\sqrt{x}-1}\)
\(=\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\frac{2}{\sqrt{x}-1}\right)\)
\(=\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\frac{2}{x+\sqrt{x}+1}\)
Do \(x+\sqrt{x}+1=x+\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow P=\frac{2}{x+\sqrt{x}+1}>0\)