Bài này thế dễ ai rãnh làm thử
Đề bài:Cho tam giác ABC(AB<AC) có AF là đường cao.Về phía ngoài vẽ tam giác ABD vuông cân ở D,tam giác ACE vuông cân ở E.Chứng minh rằng DEF vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lm s để viết đc chữ màu xanh mà nhấp chuột vào là vào trang đó đc z bn??? Chỉ mk vs
Do AB// CD=) \(\widehat{ABC}\)=\(\widehat{BC\text{D}}\) (Hai góc so le trong) (*)
Do AB//CD=) \(\widehat{ABC}\)=\(\widehat{B\text{D}C}\) (Hai góc đồng vị) (**)
Từ (*) và (**) =) \(\widehat{BC\text{D}}\)=\(\widehat{B\text{D}C}\)
Mà \(\widehat{CB\text{D}}\)= \(90^0\)
=) Tam giác BCD là tam giác vuông cân tại B
=) BC = BD = 30 cm
Vậy BD = 30 cm
Căng đấy, làm hơi lâu =))
- Gọi giao điểm của OA và BC, OC và AB, OB và AC lần lượt là D, E, F.
- Xét các tam giác:
+) △AOE có \(OA< OE+AE\) (Bất đẳng thức tam giác). Cộng 2 vế cho OC ta được: \(OA+OC< OE+AE+OC\)
\(\Rightarrow OA+OC< AE+CE\) (Do OE + OC = AE)
⇒ △CEB có \(CE< BE+BC\) (Bất đẳng thức tam giác). Cộng 2 vế cho AE ta được: \(AE+CE< BE+BC+AE\)
\(\Rightarrow AE+CE< AB+AC\) (Do BE + AE = AB) (1)
+) △BOD có \(OB< OD+BD\) (Bất đẳng thức tam giác). Cộng 2 vế cho OA ta được: \(OB+OA< OD+BD+OA\)
\(\Rightarrow OB+OA< BD+AD\) (Do OA + OD = AD)
⇒ △ADC có \(AD< AC+DC\) (Bất đẳng thức tam giác). Cộng 2 vế cho BD ta được: \(BD+AD< AC+DC+BD\)
\(\Rightarrow BD+AD< AB+BC\) (Do DC + BD = BC) (2)
+) △AOF có \(OA< AF+OF\) (Bất đẳng thức tam giác). Cộng 2 vế cho OB ta được: \(OA+OB< AF+OF+OB\)
\(\Rightarrow OF+OE< AF+BF\) (Do OF + OB = BF)
⇒ △BCF có \(BF< BC+FC\) (Bất đẳng thức tam giác). Cộng 2 vế cho AF ta được: \(AF+BF< BC+FC+AF\)
\(\Rightarrow AF+BF< BC+AC\) (Do AF + FC = AC) (3)
- Mặt khác:
\(OA+OC+OB+OA+OC+OB< AB+AC+AB+BC+BC+AC\)
\(\Rightarrow2OA+2OB+2OC< 2AB+2AC+2BC\)
\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)
\(\Rightarrow OA+OB+OC< AB+AC+BC\) (đpcm).
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)