Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)
d: tan B=AC/AB
sin B=AC/BC
AB<BC(ΔABC vuôngtại A)
=>AC/AB>AC/BC
=>tanB>sin B
b: Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*20=12*16
=>AH=9,6cm
Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5
nên góc B=53 độ
=>góc C=37 độ
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*20=12*16=192
=>AH=9,6cm
c:
HB=AB^2/BC=12^2/20=7,2cm
HC=16^2/20=12,8cm
ΔAHB vuông tại H có HE là đường cao
nên HE*AB=AH*HB
=>HE*12=7,2*4,8
=>HE=2,88(cm)
ΔAHC vuông tại H có FH là đường cao
nên HF*AC=HA*HC
=>HF*16=4,8*12,8
=>HF=12,8*0,3=3,84(cm)