K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Lưu ý là lớp 6 không cần thiết phải viết dấu "=>". 

a. Với số tự nhiên n.

Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)

=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)

=> \(3n+15-3n-12⋮n+4\)

=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)

=> \(3⋮n+4\)

=> \(n+4\in\left\{1;3\right\}\) 

+) Với n + 4 = 1 vô lí vì n là số tự nhiên.

+) Với n + 4 = 3 vô lí vì n là số tự nhiên

Vậy không có n thỏa mãn.

b) Với số tự nhiên n.

Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và  \(2\left(2n+5\right)⋮\left(2n+5\right)\)

=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)

=> \(4n+20-4n-10⋮2n+5\)

=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)

=> \(10⋮2n+5\)

=> \(2n+5\in\left\{1;2;5;10\right\}\)

+) Với 2n + 5 = 1 loại

+) với 2n + 5 = 2 loại

+) Với 2n + 5 =5 

            2n    = 5-5

              2n    = 0

            n      = 0 Thử lại thỏa mãn

+ Với 2n + 5 = 10 

            2n    = 10 -5

             2n    = 5

               n    = 5/2  loại vì n là số tự nhiên.

Vậy n = 0.

3 tháng 1 2016

giải cả cách làm giùm mk dc k

 

26 tháng 10 2017

a) n = 3

b) n = 1

c) n = ........?

26 tháng 10 2017

Ghi cả lời giải ra chứ

31 tháng 10 2021

Xin lỗi, mình sai chính tả một chút ở phần cuối ạ!

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

19 tháng 11 2016

Vì quá nhiều nên mk làm sơ sơ thôi

a) 15 chia hết cho n+1

=> n+1 thuộc Ư(15)={-15;-14;...14;15}

=> n thuộc { -16;-15;...;13;14}

b) 3n+5 chia hết cho n+1

=> 3n+3+2=3(n+1)+2 chia hết cho n+1

Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)

c) n+7 chia hết cho n+1

=> (n+1)+6 chia hết cho n+1

=> 6 chia hết cho n+1 ( cũng làm tương tự)

d) 4n+7 chia hêt cho n-2

=> (4n-8)+15 chia hết cho n-2

=> 4(n-2) + 15 chia hết cho n-2

=> n-2 thuộc Ư(15)={-15;-14;...;14;15}

=> n thuộc {-13;-14;...;16;17}

e) 5n+8 chia hết cho n-3

=> (5n-15)+23 chia hết cho n-3

=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)

f) 6n+8 chia hết cho 3n+1

=> 2(3n+1)+6 chia hết cho 3n+1

=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé

19 tháng 11 2016

a) Vì 15 chia hết cho n + 1

=> n + 1 thuộc ước của 15

 n + 1 thuộc { 1 ; 3 ; 5 ; 15 }

=> n thuộc { 0 ; 2 ; 4 ; 14 }