Bài 1 : Biết rằng :
bz - cy/a = cx - az/b = ay - bx/c
Hãy chứng minh x : y : z = a : b : c
#Thankyou
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Biết rằng :
bz - cy/a = cx - az/b = ay - bx/c
Hãy chứng minh x : y : z = a : b : c
#Thankyou
Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)
mình ngại làm ra lắm bạn có thể mở bài 88 trang 29 sách nâng cao và một số chuyên đề toán 7
lời giải trang 94 nhé
tích luôn cho mình nha
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
biết rằng : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). hãy chứng minh x : y : z = a : b :c
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
suy ra:
\(\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)
\(\frac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow x:y:z=a:b:c\)
Chứng minh x,y,z = a,b,y là sao ? Là x : y : z = a : b : y hay thế nào ?
Ta có : \(\dfrac{bz-cy}{a}\text{=}\dfrac{cx-az}{b}\text{=}\dfrac{ay-bx}{c}\)
\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\text{=}\dfrac{abz-acy+bcz-baz+cay-cbx}{a^2+b^2+c^2}\text{=}0\)
\(\Rightarrow\dfrac{bz-cy}{a}\text{=}0\Rightarrow bz\text{=}cy\)
\(\Rightarrow\dfrac{b}{c}\text{=}\dfrac{y}{z}\left(1\right)\)
\(\dfrac{cx-az}{b}\text{=}0\Rightarrow cx\text{=}az\)
\(\Rightarrow\dfrac{c}{a}\text{=}\dfrac{z}{x}\left(2\right)\)
Từ (1) và (2):
\(\Rightarrow dpcm\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow x:y:z=a:b:c\)