K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Đề sai rồi bạn

26 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

26 tháng 12 2023

Bạn đăng câu hỏi xong bạn tự làm luôn rồi?

24 tháng 9 2021

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

31 tháng 12 2022

A=(4+4^2)+...+4^22(4+4^2)

=20(1+...+4^22) chia hết cho 20

A=4(1+4+4^2)+...+4^22(1+4+4^2)

=21(4+...+4^22) chia hết cho 21

Vì A chia hết cho 20 và 21

và ƯCLN(20;21)=1

nên A chia hết cho 20*21=420

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
$A=(4+4^2)+(4^3+4^4)+...+(4^{23}+4^{24})$

$=(4+4^2)+4^2(4+4^2)+...+4^{22}(4+4^2)$

$=(4+4^2)(1+4^2+....+4^{22})=20(1+4^2+...+4^{22})\vdots 20$

----------------------

$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$

$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$

$=(1+4+4^2)(4+4^4+....+4^{22})=21(4+4^4+...+4^{22})\vdots 21$
--------------------------

Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$

7 tháng 1 2024

viết dấu + cho nhanh, bạn!

7 tháng 1 2024

A = 1 + 4 + 42 + 43 + ... + 42021

A = 40 + 41 + 42 + 43 +...+ 42021

Xét dãy số 0; 1; 2; 3;...; 2021

Dãy số trên có số số hạng là:

(2021 - 0) : 1 + 1 = 2022

Vậy A có 2022 số hạng

vì 2022 : 3 = 674

Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó

A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)

A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)

A = 21 + 43.21 +... + 42019.21

A = 21.(1 + 43 + ... + 42019

21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)