Cho tam giác ABC vuông tại A , BC=a . Gọi I là giao điểm ba đương phân giác của tam giác . Gọi r là khoảng cách từ I đến BC
Chứng minh rằng : \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(S_{IBC}=\frac{1}{2}.BC.IH=\frac{1}{2}.a.r\)
b/
Từ I hạ IK vuông góc với AC tại K và IE vuông góc với AB tại E
Xét tam giác vuông BIH và tam giác vuông BIE có
Cạnh huyền BI chung
^HBI=^EBI (BI là phân giác ^ABC)
=> tam giác BHI = tam giác BEI (hai tam giác vuông có cạnh huyền và góc nhon tương ứng bằng nhau)
=> IH=IE (1)
Xét tam giác vuông CHI và tam giác vuông CKI, chứng minh tương tự => IH=IK (2)
Từ (1) và (2) => IH=IE=IK=r
=> \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}=\frac{1}{2}.BC.IH+\frac{1}{2}.AC.IK+\frac{1}{2}.AB.IE\)
\(S_{ABC}=\frac{1}{2}.a.r+\frac{1}{2}.b.r+\frac{1}{2}.c.r=\frac{a+b+c}{2}.r\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)
\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)
\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)