K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

17^5 c/s tận cùng là 7(dùng 4k+1 gì gì đấy để ra c/s tận cùng)

24^4 c/s tận cùng là 6(4q)

13^21 tận cùng là 3(4p+1)

->bt có c/s tận cùng là 0 => chia hết cho 10

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

25 tháng 3 2017

Muốn chia hết cho 10 thì tận cùng phải bằng 0

Ta có

5+4-1=0

=> 175+244-1321 chia hết cho 10

16 tháng 10 2021

a: \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)

b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)

17 tháng 10 2021

undefined

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

3 tháng 9 2017

cảm ơn nhiều nhé

11 tháng 1 2017

Theo bài ra , ta có 3 trg hợp n : 

TH1 : n chia hết cho 3 .

Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .

TH2 : n chia 3 dư 1 

Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

TH3 : n chia 3 dư 2 

Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .

11 tháng 1 2017

ta có: n(n+2)(n+7) \(⋮\)3.

đặt A = n(n+2)(n+7)

 vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\)  N )                         

nếu n=3k => n \(⋮\)

=> A \(⋮\)3. (1)

nếu n=3k+1 => n+2=3k+1+2

                            =3k+3 \(⋮\)3

=> A \(⋮\)(2)

nếu n=3k+2 => n+7=3k+2+7

                            =3k+9 \(⋮\)3

=> A \(⋮\)(3)

từ (1);(2) và (3) => A \(⋮\)3 với mọi n .

vậy  n(n+2)(n+7) \(⋮\)3.với mọi n .

chcs năm mới vui vẻ, k nha...

28 tháng 10 2015

Ta có : 111...1(n chữ số 1) =10^(n-1)+10^(n-2) +...+10+1

Mà 10^(n-1) : 9 dư 1 ; 10^(n-2) : 9 dư 1 ; ... 1: 9 dư 1

Vậy 111...11(n chữ số 1) : 9 dư n 

n : 9 dư n 

Nên 111...11 ( n chữ số 1) - n chia hết cho 9 với mọi STN n .

19 tháng 6 2016

Học Toán trước hết học Văn hóa đã bạn nhé! Lớp 7 rồi mà viết "... PHẢI trình bày lời giải", nghe không hợp tai.

19 tháng 6 2016

Dãy số A = { a1 ; a2 ; ... a3 }có tích 3 số bất kỳ là dương.

Nếu có aj = 0 thì tích aj * a1 * a2 = 0 trái đề bài, loại => Không số nào trong A = 0 (1)

Giả sử có 1 số ai <0 thì:

Tích của ai * ax * ay > 0 => ax * ay < 0 => ax và ay trái dấu => có hoặc ax hoặc ay <0 - Giả sử ax < 0

Tích của ai * am * an > 0 => am * an < 0 am và an trái dấu => có hoặc am hoặc an <0 - Giả sử am < 0

Như vậy tích ai * ax * am < 0 - trái với giả thiết đề bài.

Như vậy điều giả sử là sai.

Trái với điều giả sử là: Không có số nào trong A < 0 (2)

Từ (1) và (2) => Tất cả số trong A đều > 0 - đpcm.