K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Cho mình biết đề hỏi cái gì đi.

khó quá nguyen van hung

8 tháng 7 2015

=> x=1/3 hoặc  y=1/5 hoặc z=-1/4 (một trong 3 tích này bằng 0)

 x+y=y-1 nên x=y-1-y = -1

  Lại có: y-1 = z+1 nên y>x

  + Nếu y = 1/5 thì 1/5-1 = z+1 => -4/5 = z+1 => z = -4/5-1 = -9/5

Thử lại: -1+1/5 = -4/5 = -9/5 + 1

Vậy ta có cặp x,y,z lần lượt là -1;1/5;-9/5

    

+ Nếu z = -1/4 thì y-1 = -1/4+1 => y-1 = 3/4 => y = 3/4+1 = 7/4

Vậy ta có cặp x,y,z tiếp theo là x=-1 ; y=7/4 ; z=-1/4

16 tháng 10 2016

a. vô nghiệm  vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0

b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0

vậy x=1; y=-1; z=1

c.tổng 3 số dưng luông  lớn hơn bằng ko

vậy x=1/3; y=2; z=1

d tương tự 

x-z=0

x+y=0

z+1/4=0

.............

z=-1/4

x=-1/4

y=1/4

16 tháng 10 2016

Cac ban lam chi tiet giup minh voi 

24 tháng 6 2017

p la j har ban

26 tháng 5 2016

Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)

\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)

(Áp dụng bất đẳng thức Bunhiacopxki)

Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)

25 tháng 5 2016

áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:

\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)

\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)

\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)

=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)

dấu = xảy ra<=>x=y=z

Vậy GTLN của biểu thúc là 3 khi x=y=z