Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)
\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)
(Áp dụng bất đẳng thức Bunhiacopxki)
Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)
áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:
\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)
\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)
\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)
=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)
dấu = xảy ra<=>x=y=z
Vậy GTLN của biểu thúc là 3 khi x=y=z
Ở đây em chỉ lp 7 thoy à
Nhưng mà em chỉ cho nhé
Qua hok 24 thì có thầy giải cho
tk nha
Dễ thấy:\(y\le\frac{y^2+1}{2}\Rightarrow\frac{1+x^2}{1+y+z^2}\ge\frac{1+x^2}{1+z^2+\frac{1+y^2}{2}}\)
Tương tự cho các BĐT còn lại nhé :v
Đặt \(a=1+x^2;b=1+y^2;c=1+z^2\) thì cần cm
\(A=\frac{a}{2c+b}+\frac{b}{2a+c}+\frac{c}{2b+a}\ge1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{a^2}{2ac+ab}+\frac{b^2}{2ab+bc}+\frac{c^2}{2bc+ac}\)
\(\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)