K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 10 2019

\(A=\sqrt{7+\sqrt{33}}+\sqrt{7-\sqrt{33}}>0\)

\(\Rightarrow A^2=14+2\sqrt{7^2-33}\)

\(\Rightarrow A^2=14+2\sqrt{16}=22\)

\(\Rightarrow A=\sqrt{22}\)

\(\sqrt{3x^2+33}+3\sqrt{x}=2x+7\)(ĐKXĐ: x>=0)

=>\(\sqrt{3x^2+33}-6+3\sqrt{x}-3=2x-2\)

=>\(\dfrac{3x^2+33-36}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)=2\left(x-1\right)\)

=>\(\dfrac{3x^2-3}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(x-1\right)=0\)

=>\(\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)

=>\(\left(\sqrt{x}-1\right)\left(\dfrac{3\left(\sqrt{x}+1\right)\left(x+1\right)}{\sqrt{3x^2+33}+6}+3-2\left(\sqrt{x}+1\right)\right)=0\)

=>\(\sqrt{x}-1=0\)

=>x=1(nhận)

26 tháng 7 2018

\(A=\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\)

\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)

\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}\)

\(=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}=5\)

\(B=\sqrt{7+\sqrt{33}}+\sqrt{7-\sqrt{33}}\)

\(\Rightarrow\)\(\sqrt{2}B=\sqrt{14+2\sqrt{33}}+\sqrt{14-2\sqrt{33}}\)

                      \(=\sqrt{\left(\sqrt{11}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)

                     \(=\sqrt{11}+\sqrt{3}+\sqrt{11}-\sqrt{3}=2\sqrt{11}\)

\(\Rightarrow\)\(B=\sqrt{22}\)

26 tháng 7 2018

cho mk hỏi căn viết thế nào

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

7 tháng 11 2017

\(A=\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\)

\(A^2=\left(\sqrt{5+\sqrt{21}}^2+2\sqrt{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+\sqrt{5-\sqrt{21}}^2\right)\)

\(A^2=5+\sqrt{21}+\sqrt{4\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+5-\sqrt{21}\)

\(A^2=10+\sqrt{4.\left(25-21\right)}\)

\(A^2=10+\sqrt{4.4}=10+4=14\)

\(A=\sqrt{14}\)

Tương tự

18 tháng 6 2019

đụ mạ mi

g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)

h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)

l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)

j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

6 tháng 11 2021

ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)

\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)

\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)

a: \(\dfrac{1}{3}\cdot\sqrt{18}-\sqrt{192}-\dfrac{\sqrt{33}}{\sqrt{11}}+3\cdot\sqrt{5\dfrac{1}{3}}\)

\(=\dfrac{1}{3}\cdot3\sqrt{2}-8\sqrt{3}-\sqrt{3}+3\cdot\dfrac{4}{\sqrt{3}}\)

\(=\sqrt{2}-7\sqrt{3}+4\sqrt{3}\)

\(=\sqrt{2}+3\sqrt{3}\)

b: Ta có: \(\sqrt{\left(2\sqrt{3}-5\right)^2}-2\cdot\sqrt{7+4\sqrt{3}}\)

\(=5-2\sqrt{3}-2\cdot\left(2+\sqrt{3}\right)\)

\(=5-2\sqrt{3}-4-2\sqrt{3}\)

\(=-4\sqrt{3}+1\)

i: =-12*căn 3/2căn 3=-6

h: =72căn 2/12căn 2=6

g: =25căn 12/5căn 6=5căn 2

f: =(15:5)*căn 6:3=3căn 2

d: =-1/2*6*căn 10=-3căn 10