Cho đường tròn tâm O bán kính R , đường kính AB , lấy C thuộc đường đường tròn bất kì . Kẻ tiếp tuyến tại A của đường tròn . Tiếp tuyến này cắt tia BC tại D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E
â) CM: 4 điểm A,E, C, Ở cùng thuộc 1 đường tròn
b) CM = BC. BD = 4R2 va OE // BD
c) Đường thẳng kẻ qua O và vuông góc BC tại N cắt tia EC ở F. CM: BF là tiếp tuyến của đường tròn
đ) Gọi H là hình chiếu của C trên AB , AC cắt OE tại M . CM: Khi C di động trên đường tròn tâm O và thỏa mãn yêu cầu đề bài thì đường tròn ngoại tiếp tam giác HMN luôn đi qua 1 điểm cố định