K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E

=>EC là tiếp tuyến tại C của đường tròn

=>EC\(\perp\)OC tại C

Xét tứ giác EAOC có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EAOC là tứ giác nội tiếp

=>E,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

Ta có: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

c: ΔOBC cân tại O

mà OF là đường cao

nên OF là phân giác của góc BOC

OC\(\perp\)CE tại C

mà C\(\in\)EF

nên OC\(\perp\)CF tại C

Xét ΔOCF và ΔOBF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>BF là tiếp tuyến của (O;R)

20 tháng 11 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)

EA=EC

=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

b: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=4R^2\)

c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)

\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EDC}=\widehat{ECD}\)

=>ED=EC

mà EC=EA

nên EA=ED
d: Xét ΔOCF và ΔOBF có

OC=OB

CF=BF

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

e: ΔOBF=ΔOCF

=>\(\widehat{BOF}=\widehat{COF}\)

=>OF là phân giác của \(\widehat{COB}\)

=>\(\widehat{COB}=2\cdot\widehat{COF}\)

\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)

\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔEOF vuông tại O

26 tháng 11 2023

a: O là trung điểm của AB

=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)

ΔOBD vuông tại B

=>\(OD^2=OB^2+BD^2\)

=>\(OD^2=4,8^2+6,4^2=64\)

=>OD=8(cm)

Xét ΔDON vuông tại O có OB là đường cao

nên \(OB^2=BN\cdot BD\)

=>\(BN\cdot6,4=4,8^2\)

=>BN=3,6(cm)

DN=DB+BN

=3,6+6,4

=10(cm)

Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)

=>\(ON^2+8^2=10^2\)

=>\(ON^2=36\)

=>ON=6(cm)

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó; OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)

=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)

=>OC là phân giác của góc MOA

Xét ΔCAO và ΔCMO có

OA=OM

\(\widehat{COA}=\widehat{COM}\)

OC chung

Do đó: ΔCAO=ΔCMO

=>\(\widehat{CAO}=\widehat{CMO}=90^0\)

=>AC\(\perp\)AB

mà BD\(\perp\)AB

nên BD//AC

Xét ΔOAC vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BON}\)

Do đó: ΔOAC=ΔOBN

=>OC=ON

=>O là trung điểm của CN

Xét ΔDCN có

DO là đường cao

DO là đường trung tuyến

Do đó;ΔDCN cân tại D

=>DC=DN

c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)

nên CA là tiếp tuyến của (O)

18 tháng 12 2023

Xét (O) có

EA,EC là các tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại M

Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

nên CMON là hình chữ nhật

=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)

Ta có: ΔCHO vuông tại H

=>H nằm trên đường tròn đường kính CO(2)

Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO

mà O cố định

nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định