Tìm x:
a, 32x + 1 + 32x = 36
b, (x + 1)5 = ( x+ 1)3
Nhanh lên đi bạn, mai mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1a.2\sqrt{25xy}+\sqrt{225x^3y^3}-3y\sqrt{16x^3y}=10\sqrt{xy}+15xy\sqrt{xy}-12xy\sqrt{xy}=10\sqrt{xy}+3xy\sqrt{xy}=\sqrt{xy}\left(10+3xy\right)\left(x,y\ge0\right)\)
\(b.-\sqrt{36b}-\dfrac{1}{3}\sqrt{54b}+\dfrac{1}{5}\sqrt{150b}=-6\sqrt{b}-\sqrt{6b}+\sqrt{6b}=-6\sqrt{b}\left(b\ge0\right)\)
\(2.\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}-\sqrt{3x}-3\sqrt{1-2x}=0\)
\(\Leftrightarrow\sqrt{1-2x}=4\sqrt{3x}\left(x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow1-2x=48x\)
\(\Leftrightarrow x=\dfrac{1}{50}\left(KTM\right)\)
KL....
\(5,2.x+\left(3,2.x-1\right)=2\)
\(5,2.x+3,2x-1=2\)
\(5,2x+3,2x=3\)
\(8,4x=3\)
\(x=2,8\)
5,2*x+(3,2*x-1)=2
5,2*x+3,2*x-1=2
5,2*x+3,2*x=3
8.4*x=3
x=2.8
Ta có :
\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)
\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)
\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)
\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)
Đặt \(a=\frac{1}{x+1}\) ta có :
\(A=1-a+a^2\)
\(A=a^2-a+1\)
\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)
\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)
\(\Leftrightarrow\)\(a=\frac{1}{2}\)
Do đó :
\(a=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(x+1=2\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=1\)
Chúc bạn học tốt ~
a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)
a: \(\Leftrightarrow x^2-2x-8-x^2=36\)
=>-2x=44
hay x=-22
b: \(\Leftrightarrow4x^2+x-8x-2-4x^2-27x=1\)
=>-34x=3
hay x=-3/34
c: =>(x-10)(x-1)=0
=>x=10 hoặc x=1
C=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)
đặt S=1x3+3x5+...+99x101
=>6S=6x(1x3+3x5+...+99x101)
=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)
=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101
=1x3x1+99x101x103
=>S=(3+99x101x103):6=171650
=>C=171650+(2x4+4x6+...+98x100)
đặt A=2x4+4x6+...+98x100
=>6A=6x(2x4+4x6+...+98x100)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100
=98x100x102
=>A=98x100x102:6=166600
=>C=166600+171650
=>C=338250
B=2x2+4x4+6x6+...+100x100
=2x(4-2)+4x(6-2)+6x(8-2)+...+100x(102-2)
=2x4-4+4x6-8+6x8-12+...+100x102-200
=(2x4+4x6+6x8+...+100x102)-(4+8+12+...+200)
đặt A=2x4+4x6+...+98x100+100x102
=>6A=6x(2x4+4x6+...+98x100+100x102)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)+100x102x(104-98)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100+100x102x104-98x100x102
=100x102x104
=>A=100x102x104:6=176800
=>B=176800-(4+8+12+...+200)
đặt S=4+8+12+..+200
Số số hạng của S là:
(200-4):4+1=50 số
S=(200+4)x50:2=5100
=>B=176800-5100
=>B=171700
a) \(3^{2x+1}+3^{2x}=36\)
\(\Leftrightarrow3^{2x}\left(3+1\right)=36\)
\(\Leftrightarrow3^{2x}.4=36\)
\(\Leftrightarrow3^{2x}=9\)
\(\Leftrightarrow3^{2x}=3^2\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
b) \(\left(x+1\right)^5=\left(x+1\right)^3\)
\(\Leftrightarrow\left(x+1\right)^5-\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(x+1\right)^3\left[\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\in\left\{-2;0\right\}\end{cases}}\)
a)32x + 1 + 32x = 36
=> 32x . 3 + 32x = 36
=> 32x . 4 = 36
=> 32x = 36 : 4
=> 32x = 9
=> 32x = 32
=> 2x = 2
=> x = 1
b) (x + 1)5 = (x + 1)3
=> (x + 1)5 - (x + 1)3 = 0
=> (x + 1)3.[(x + 1)2 - 1] = 0
=>(x + 1)3(x + 1 - 1)(x + 1 + 1) = 0
=> (x + 1)3.x.(x + 2) = 0
=> x = -1 hoặc x = 0 hoặc x = -2