cho x/z=z/y.Chứng minh :x^2+z^2/y^2+z^2=x/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{z}=\frac{z}{y}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
\(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2k^2+z^2}{y^2k^2+y^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{y^2k^2}{y^2}=k^2\left(1\right)\)
Và \(\frac{x}{y}=\frac{zk}{y}=\frac{yk^2}{y}=k^2\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\RightarrowĐPCM\)
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)+\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xy+yz+zx\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+2\left(xy+yz+zx\right)=2z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
Ta có :
\(\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)\)
\(=x^2+xz+xy+yz+y^2+xy+zy+xz\)
\(=x^2+y^2+2\left(xz+xy+yz\right)\)
\(2\left(x+z\right)\left(z+y\right)\)
\(=2\left(xz+z^2+xy+zy\right)\)
\(=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2+2\left(xz+xy+yz\right)=2z^2+2\left(xz+xy+yz\right)\)
\(\Rightarrow x^2+y^2=2z^2\)
\(\Rightarrow z^2=\frac{x^2+y^2}{2}\)
Vây ...
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
Ta có: \(\frac{x}{z}=\frac{z}{y}\rightarrow xy=z^2\)Thay vào ta có:
\(\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\left(x+y\right)}{y\left(x+y\right)}=\frac{x}{y}\)(đpcm)
Vậy...
Ta có:
\(\frac{x}{z}=\frac{z}{y}\Rightarrow z^2=x.y\)
\(\Leftrightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\left(x+y\right)}{y\left(y+x\right)}=\frac{x}{y}\)
Vậy khi \(\frac{x}{z}=\frac{z}{y}\)thì \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Chúc em học tốt nhé!