K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019
Tự vẽ hình nha
kẻ phân giác BK của góc ABC ( K thuộc AC)

theo tính chất tia phân giác ta có:
\(\frac{AK}{AB}=\)\(\frac{KC}{BC}\)

áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{AK}{AB}=\frac{KC}{BC}\) =\(\frac{AK+KC}{AB+BC}\) =\(\frac{AC}{AB+BC}\)

mà tan\(\frac{ABC}{2}\) = tan ABK = \(\frac{AK}{AB}\)

==> tanABK = tan \(\frac{ABC}{2}\)=\(\frac{AK}{AB}\)=\(\frac{AC}{AB+BC}\)(đpcm) Chúc bạn học tốt
24 tháng 9 2015

Bn có thể vào đây

8 tháng 6 2019

A C B N D E M

( Thông cảm hình bị lệch )

a) + Xét \(\Delta ABC\)và \(\Delta DMC\)có :

AM = DM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)( vì là hai góc đối đỉnh )                => \(\Delta AMB=\Delta DMC\)

MB = MC ( AM là trung tuyến của \(\Delta ABC\))

=> \(\widehat{B}=\widehat{MCD}\)( hai góc tương ứng )

=> DC // AB ( có hai góc so le trong = )

Mà AB \(\perp\)AC ( Vì \(\Delta ABC\)vuông tại A)

=> DC _|_ AC 

+ Xét \(\Delta BEC\)có :

M là trung điểm của cạnh BC ( Vì AM là trung tuyến của ABC )

=> EM là trung tuyến

A là trung điểm của BE ( Vì EA = AB ) => CA là trung tuyến

Mà EM cắt AC tại N => N là trọng tâm của \(\Delta ABC\)

\(\Rightarrow NC=\frac{2}{3}CA\Rightarrow NC=2NA\)

+ Ta có \(\Delta AMB=\Delta DMC\Rightarrow AB=CD\)

Xét \(\Delta ACD\)có :

CD + AC > AD ( bđt tam giác ) . Mà CD = AB ; AD = 2AM

=> \(AB+AC>2AM\Leftrightarrow\frac{AB+AC}{2}>AM\)(1)

+ Xét \(\Delta AMB\)có : AM > AB - BM

          \(\Delta AMC\)có : AM > AC - CM

=> 2AM > AB + AC - BM - CM

<=> 2AM > AB + AC - (BM +CM )

<=> 2AM > AB + AC - BC

<=> AM > \(\frac{AB+AC-BC}{2}\)(2)

Từ (1), (2) => Điều cần cm trên đề bài .

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0