tìm số tự nhiên nhỏ nhất khi chia số đó cho 5, 6, 7, 8 được số dư lần lượt là 1, 2, 3, 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Gọi số cần tìm là a ; a nhỏ nhất và a\(\in\)N
a chia cho 6,7,9 được lần lượt số dư là 2,3,5
\(\Rightarrow a+4⋮6;7;9\)
\(\Rightarrow a+4\in BCNN\left(6,7,9\right)=126\)
\(\Rightarrow a=126-4=122\)
vậy số cần tìm là 122
TICK CHO MÌNH NHA
Trả lời:
Gọi số tự nhiên đó là a
Ta có: a:6, 5, 4, 3, 2 dư 5, 4, 3, 2, 1
➩ a+1 chia hết cho 6, 5, 4, 3, 2
➩ a+1 =60
➩ a=59
Vì số đó chia 2 , 3 , 4 , 5 , 6 dư 1 , 2 , 3, 4 , 5 nên nếu lấy số đó cộng thêm 1 thì được số mới chỉ hết cho cả 2 , 3 , 4 , 5 , 6. Và số mới đó chia cho 7 dư 1 .
Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6 ; số chia hết cho 4 thì chia hết cho 2 . Vậy chỉ cần số mới chia hết cho 3 , 4 , 5 là nó chia hết cho cả 2 , 3 , 4 , 5 , 6 . Số chia hết cho 3 , 4 , 5 là các số : 60 , 120 , 180 , ....
Trong các số đó , số chia cho 7 dư 1 là 120 .Vậy số chia hết cho 2 , 3, 4 , 5 , 5 ; chia cho 7 dư 1 là : 120
Vậy số cần tìm là : 120 - 1 = 119
Tìm số tự nhiên bé nhất chia cho 2 ,3,4,5,6 thì được các số dư lần lượt là 1,2,3,4,5 và khi chia cho 7 thì không dư .Tím số đó
Vì số đó chia cho 2; 3; 4; 5; 6 dư 1; 2; 3; 4;5 nên nếu lấy số đó cộng thêm 1 thì được số mới chia hết cho cả 2; 3; 4; 5; 6. Và số mới đó chia cho 7 dư 1.
Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6; số chia hết cho 4 thì chia hết cho 2. Vậy chỉ cần số mới chia hết cho 3; 4; 5 là nó chia hết cho cả 2; 3; 4; 5; 6. Số chia hết cho 3; 4; 5 là các số 60; 120; 180; . . .
Trong các số đó, số chia cho 7 dư 1 là 120. Vậy số chia hết cho 2; 3; 4; 5; 6 và chia cho 7 dư 1 là 120.
Suy ra số cần tìm là 120 - 1 = 119.
Lời giải:
Gọi số tự nhiên đó là $a$. Theo bài ra ta có:
$a-1\vdots 5$
$a-2\vdots 6$
$a-3\vdots 7$
$a-4\vdots 8$
$\Rightarrow a+4\vdots 5,6,7,8$
Do đó $a+4$ là bội chung của $5,6,7,8$
Để $a$ nhỏ nhất thì $a+4$ nhỏ nhất, hay $a+4=BCNN(5,6,7,8)$
$\Rightarrow a+4=840$
$\Rightarrow a=836$
.