K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Đơn giản

tự làm

tự tìm

cấm hỏi

4 tháng 10 2017

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

27 tháng 10 2023

a/

\(a=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

Ta thấy

\(2\left(1+2+2^2+2^3\right)=2.15=30\)

\(\Rightarrow a=30+2^4.30+...+2^{16}.30⋮10\)

b/

Gọi tổng của 5 số TN liên tiếp là

n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10=5(n+2) chia hết cho 5

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

14 tháng 8 2017

bài cô Nguyệt

3 tháng 12 2015

đồng dư thức nek, nó khá dài :))

C = 1 + 2 + 22 + ... + 22011

2C = 2 + 22 + 23 + ... + 22012

2C - C = 2 + 22 + 23 + ... + 22012 -  1 + 2 + 22 + ... + 22011

C = 22012 - 1

Ta có 22012 = 16503 đồng dư với 1 (mod 15)

=> 16503 - 1 đồng dư với 1 - 1 (mod 15)

=> 16503 - 1 đồng dư với 0 (mod 15)

=> 16503 - 1 chia hết cho 15

=> 22012 - 1 chia hết cho 15

=> C chia hết cho 15

3 tháng 12 2015

C = 1 + 2 + 2^2 +..........+ 2^2011

C = ( 1 + 2 + 2^2 + 2^3 ) +............. + ( 2^2008 + 2^2009 + 2^2010 + 2^2011)

C = 1( 1 + 2 + 2^2 + 2^3 ) + ............ + 2 ^2008 ( 1 + 2 + 2^2 + 2^3 )

C = ( 1 + ............. + 2^2008)  . 15 

Vậy C chia hết cho 15

5 tháng 11 2021

\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2^2+2^3\right)+...+2^{118}\left(1+2^2+2^3\right)\\ A=\left(1+2^2+2^3\right)\left(2+...+2^{118}\right)\\ A=7\left(2+...+2^{118}\right)⋮7\)

5 tháng 11 2021

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7=7\left(2+2^4+...+2^{118}\right)⋮7\)