K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

where is câu hỏi

rút gọn hay tính hay...

30 tháng 9 2019

\(64-x^2-y^2+xy=64-\left(x^2-xy+y^2\right)\)

                                           = \(8^2-\left(x-y\right)^2\)

                                           =(8-x+y)(8+x-y)

26 tháng 5 2017

a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)

Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:

\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp 

ra \(x=8;y=-8\)

30 tháng 8 2017

Câu 1:
\(\left(x+y\right)^2+3\left(x+y\right)-10\)
\(=\left(x+y\right)^2+3\left(x+y\right)+2,25-12,25\)
\(=\left(x+y+1,5\right)^2-3,5^2\)
\(=\left(x+y+1,5+3,5\right)\left(x+y+1,5-3,5\right)\)
\(=\left(x+y+5\right)\left(x+y-2\right)\)

Câu 2:
\(2x^2-y^2+xy\)
\(=2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(xy+y^2\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(2x-y\right)\left(x+y\right)\)

Câu 3:
\(x^{64}+x^{32}+1\)
\(=x^{64}+2x^{32}+1-x^{32}\)
\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)
\(=\left(x^{32}+1+x^{16}\right)\left(x^{32}+1-x^{16}\right)\)
\(=\left(x^{32}+x^{16}+1\right)\left(x^{32}-x^{16}+1\right)\)

Câu 4:
\(x^2+3cd\left(2-3cd\right)-10xy-1+25y^2\)
\(=x^2+25y^2-10xy+6cd-\left(3cd\right)^2-1\)
\(=\left(x^2+25y^2-10xy\right)-\left(\left(3cd\right)^2+1-6cd\right)\)
\(=\left(x+5y\right)^2-\left(3cd-1\right)^2\)
\(=\left(\left(x+5y\right)+\left(3cd-1\right)\right)\cdot\left(\left(x+5y\right)-\left(3cd-1\right)\right)\)
\(=\left(x+5y+3cd-1\right)\left(x+5y-3cd+1\right)\)

20 tháng 5 2017

Đề phải cho \(x,y\) dương nữa!

Giải:

Ta có: \(xy\left(x+y\right)^2\le\dfrac{1}{64}\)

\(\Leftrightarrow\sqrt{xy\left(x+y\right)^2}\le\sqrt{\dfrac{1}{64}}\)

\(\Leftrightarrow\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Vậy ta cần chứng minh BĐT tương đương \(\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Áp dụng BĐT AM - GM ta có:

\(\sqrt{xy}\left(x+y\right)=\dfrac{1}{2}.2\sqrt{xy}\left(x+y\right)\)

\(\le\dfrac{1}{2}.\dfrac{x+y+2\sqrt{xy}}{4}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}\) \(=\dfrac{1}{8}\)

\(\Rightarrow xy\left(x+y\right)^2\le\dfrac{1}{64}\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{4}\)

1 tháng 6 2018

cho mình hỏi \(\dfrac{1}{2}\) ở đâu vậy bạn

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
5 tháng 8 2016

1) Ta co: -64 :3 = -21,(3) => so nguyen lon nhat ko vuot qua -21,(3) la -21

5 tháng 8 2016

x+y+xy=3 <=>(x+xy)+y=3 <=> x(y+1)+(y+1)=4 <=>(x+1).(y+1)=4 . Ma x,y€Z suy ra x+1, y+1 €Z suy ra x+1,y+1 thuoc uoc cua 4. Ta co bang sau:

x+114(-1)-42-2 
y+141-4(-1)2-2 
x03-2-51-3 
y30-5-21-3 
Danh giachonchonchonchonchonchon