Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)
b) \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)
d) \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{xy}{\sqrt{z+xy}}=\frac{xy}{\sqrt{z\left(x+y+z\right)+xy}}=\frac{xy}{\sqrt{xz+yz+z^2+xy}}\)
\(=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{yz}{\sqrt{x+yz}}\le\frac{1}{2}\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right);\frac{xz}{\sqrt{y+xz}}\le\frac{1}{2}\left(\frac{xz}{y+z}+\frac{xz}{x+y}\right)\)
Cộng theo vế các BĐT trên ta có:
\(P\le\frac{1}{2}\left(\frac{xy+yz}{x+z}+\frac{yz+xz}{x+y}+\frac{xy+xz}{y+z}\right)\)
\(=\frac{1}{2}\left(\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}\right)\)
\(=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z=1\right)\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng
\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2009}\)
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2008\)
\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2008\)
\(\Leftrightarrow A^2=2009\)
\(\Leftrightarrow A=\sqrt{2009}\) khi x, y > 0 hoặc \(A=-\sqrt{2009}\) khi x, y < 0