Với x là xố tự nhiên, chứng tỏ rằng 3x+1 và 5x+1 là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d=ƯCLN(2x+5;3x+8)
=>\(\left\{{}\begin{matrix}2x+5⋮d\\3x+8⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+15⋮d\\6x+16⋮d\end{matrix}\right.\Leftrightarrow6x+15-6x-16⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(2x+5;3x+8)=1
=>2x+5 và 3x+8 là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d
Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)d \(\Rightarrow\)2 \(⋮\)d \(\Rightarrow\)d \(\in\){ 1 ; 2 }
d là ước của số lẻ 2n + 1 nên d \(\ne\)2
Vậy d = 1
Do đó ( 2n + 1 ; 6n + 5 ) = 1
Gọi ƯCLN 2 số trên là a
2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)
3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)
tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a
=> 1 chia hết cho a
=>a=1
vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau
Gọi a là ước của n+1 và 2n+3
2n+3 - n+1 chia hết cho a
= 2n+3 - 2(n+1) chia hết cho a
= 2n+3 - 2n+2 chia hết cho a
= 1 chia hết cho a
=> n+1 và 2n+3 là hai số nguyên tố cùng nhau
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$