K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra

D B A B = B M B C = D M A C = D B + B M + D M A B + B C + C A

Do đó 1 3 = P B D M P A B C (1)

Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra

E M A B = M C B C = E C A C = E M + M C + E C A B + B C + A C

do đó 2 3 = P E M C P A B C (2)

Từ (1) và (2) suy ra:

P B D M P A B C : P E M C P A B C = 1 3 : 2 3 ⇔ P B D M P E M C = 1 2

Đáp án: A

6 tháng 12 2016

qua N kẻ đường thẳng song song với AB cắt BC tại K .

Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)

nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC

Suy ra DM+EN=BK+CK=BC(dpcm)

17 tháng 6 2020

anh lớp 8 thì em chịu

18 tháng 12 2015

Tick , rồi mình trả lời cho

Bài làm 

a) xét tam giác AED và tam giác MDE có:

^ADE = ^DEM ( do AD // EM )

ED chung

^EDM = ^AED ( do AE // DM )

=> Tam giác AED = tam giác MDE ( g.c.g )

=> AD = ME

b) Gọi O là giao điểm của ED và AM

Nối AM

Xét tam giác AEM và tam giác MDA có:

^EAM = ^AMD ( so le trong vì EA // DM )

AM chung

^EMA = ^DAM ( so le trong vì EM // AD )

=> Tam giác AEM = tam giác MDA ( g.c.g )

=> AE = DM ( hai cạnh tương ứng )

Xét tam giác AEO và tam giác MDO có:

^AED = ^EDM ( so le trong vì AE // DM )

AE = DM ( chúng minh trên )

^EAM = ^AMD ( so le trong vì AE // DM )

=> Tam giác AEO = tam giác MDO ( g.c.g )

=> EO = OD

=> O là trung điểm ED.      (1)

Mà OA = OM ( do tam giác AOE = tam giác DOM )

=> O là trung điểm của AM.     (2)

Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM

Mà I là trung điểm ED ( giả thiết )

=> Điểm O và I trùng nhau.

=> I là trung điểm của ED và AM, là giao điểm của AM và ED

=> 3 điểm A, I, M thẳng hàng

3 tháng 5 2019

Từ N kẻ đường thẳng song song vói AB cắt BC tại K. Nối EK.

Xét ΔBEK và Δ NKE, ta có:

∠(EKB) =∠(KEN) (so le trong vì EN // BC)

EK cạnh chung

∠(BEK) =∠(NKE) (so le trong vì NK // AB))

Suy ra: Δ BEK = Δ NKE(g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét Δ ADM và Δ NKC, ta có:

∠A =∠(KNC) (đồng vị vì NK // AB)

AD = NK ( vì cùng bằng BE)

∠(ADM) =∠(NKC) (vì cùng bằng góc B)

Suy ra: Δ ADM = Δ NKC(g.c.g)

Suy ra: DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM

Giải sách bài tập Toán 7 | Giải sbt Toán 7

28 tháng 12 2017

Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.

Xét ∆BEK và ∆NKE, ta có:

ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)

EK cạnh chung

ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)

Suy ra: ∆BEK = ∆NKE (g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét ∆ADM và ∆NKC, ta có:

ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)

AD = NK (vì cùng bằng BE)

ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)

Suy ra: ∆ADM = ∆NKC (c.g.c)

=>DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM