K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

c và d ở đâu vại:>

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a= b

Ta có đpcm

29 tháng 9 2019

\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab.1}=4ab\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b\\ab=1\end{matrix}\right.\Leftrightarrow a=b=1\)

P/s: Cho em hỏi cái: c ở đâu ra vại:v

14 tháng 6 2018

Ta có : \(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+4\ge ab+2a+2b\)

\(\Leftrightarrow2\left(a^2+b^2+4\right)\ge2\left(ab+2a+2b\right)\)

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4a+4b\)

\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\) 

\(\Leftrightarrow a^2+a^2+b^2+b^2+4+4-2ab-4a-4b\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)

Bất đẳng thức cuối cùng luôn đúng nên ta có đpcm

Dấu đẳng thức xảy ra khi và chỉ khi a=b=2

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 1:

Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)

Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.

Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)

\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )

Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$

Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)

Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)

Chiều đảo:

Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)

Vậy ta có đpcm.

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.

Phản chứng, giả sử cả 3 BĐT đều đúng

\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)

Theo BĐT AM-GM thì:

\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)

\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)

\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)

Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.

23 tháng 4 2017

A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)

B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)

áp dụng BĐT AM-GM

\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)

cộng 2 vế của BĐT cho nhau

\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)

C)tương tự câu B) ta có

\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)

cộng từng vế của BĐT ta có đpcm

5 tháng 10 2017

Chị cx học Tê Tiêu ạ,A mấy ạ

5 tháng 10 2017

A1 em ạ

19 tháng 5 2018

1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :

A. 11 B. -7 C. 7 D. 2

2. Bậc của đơn thức (- 2x3) 3x4y là :

A.3 B. 5 C. 7 D. 8

3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:

A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c

4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:

A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm

C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm

23 tháng 4 2017

A)\(A^2+B^2\ge AB+AB\)

\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)

\(\Leftrightarrow A^2-2AB+B^2\ge0\)

\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)

Vậy \(A^2+B^2\ge AB+AB\)(đpcm)